Volume 37 Issue 3
Jun 2023
Turn off MathJax
Article Contents
TIAN Yifan, LIU Hanyu. Progress on Compounds of Inert Element Helium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635
Citation: TIAN Yifan, LIU Hanyu. Progress on Compounds of Inert Element Helium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635

Progress on Compounds of Inert Element Helium under High Pressure

doi: 10.11858/gywlxb.20230635
  • Received Date: 03 Apr 2023
  • Rev Recd Date: 20 Apr 2023
  • Accepted Date: 21 Apr 2023
  • Issue Publish Date: 05 Jun 2023
  • Helium (He), the second element in the periodic table, is the most abundant element in the universe apart from hydrogen. It is widely accepted that He exists in the interiors of gas giant planets which holds the high-pressure conditions. Helium is extremely difficult to react with other elements to form compounds owing to its strong chemical inertness determined by the full-shell electronic structure. However, in recent years, several studies have shown that physical behavior of helium is not that simple under extremely high pressure, such as the predicted stable helium compound FeO2He and the predicted water helium compound He-H2O with anomalous atomic diffusion under high pressure. These results not only play a leading role in the discovery of new paradigm on chemical bonding, but also make a substantial step for the relevant researches in the fields of high-pressure physics, geoscience, and planetary science. This paper mainly introduces the progress on helium compounds at high pressure, focuses on discussing the physical mechanism of their stability, and provides prospects for future research on the design and discovery of new helium compounds under high pressure.

     

  • loading
  • [1]
    BARTLETT N. Xenon hexafluoroplatinate (V) Xe+ [PtF6] [J]. Proceedings of the Chemical Society London, 1962(6): 197–236.
    [2]
    ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [3]
    MIAO M S. Noble gases in solid compounds show a rich display of chemistry with enough pressure [J]. Frontiers in Chemistry, 2020, 8: 570492. doi: 10.3389/fchem.2020.570492
    [4]
    MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
    [5]
    WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
    [6]
    WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [7]
    SHAO X C, LV J, LIU P, et al. A symmetry-orientated divide-and-conquer method for crystal structure prediction [J]. The Journal of Chemical Physics, 2022, 156(1): 014105. doi: 10.1063/5.0074677
    [8]
    XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
    [9]
    ZHU L, LIU H Y, PICKARD C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core [J]. Nature Chemistry, 2014, 6(7): 644–648. doi: 10.1038/nchem.1925
    [10]
    ZHANG J R, LV J, LI H F, et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions [J]. Physical Review Letters, 2018, 121(25): 255703. doi: 10.1103/PhysRevLett.121.255703
    [11]
    STAVROU E, YAO Y S, GONCHAROV A F, et al. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions [J]. Physical Review Letters, 2018, 120(9): 096001. doi: 10.1103/PhysRevLett.120.096001
    [12]
    LIU C, GAO H, WANG Y, et al. Multiple superionic states in helium-water compounds [J]. Nature Physics, 2019, 15(10): 1065–1070. doi: 10.1038/s41567-019-0568-7
    [13]
    LOUBEYRE P, JEAN-LOUIS M, LETOULLEC R, et al. High pressure measurements of the He-Ne binary phase diagram at 296 K: evidence for the stability of a stoichiometric Ne(He)2 solid [J]. Physical Review Letters, 1993, 70(2): 178–181. doi: 10.1103/PhysRevLett.70.178
    [14]
    DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
    [15]
    LIU Z, BOTANA J, HERMANN A, et al. Reactivity of He with ionic compounds under high pressure [J]. Nature Communications, 2018, 9(1): 951. doi: 10.1038/s41467-018-03284-y
    [16]
    XIONG Z H, TSUCHIYA T, VAN ORMAN J A. Helium and argon partitioning between liquid iron and silicate melt at high pressure [J]. Geophysical Research Letters, 2021, 48(3): e2020GL090769. doi: 10.1029/2020GL090769
    [17]
    RIZO H, WALKER R J, CARLSON R W, et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts [J]. Science, 2016, 352(6287): 809–812. doi: 10.1126/science.aad8563
    [18]
    JACKSON M G, CARLSON R W, KURZ M D, et al. Evidence for the survival of the oldest terrestrial mantle reservoir [J]. Nature, 2010, 466(7308): 853–856. doi: 10.1038/nature09287
    [19]
    HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [20]
    NISHI M, KUWAYAMA Y, TSUCHIYA J, et al. The pyrite-type high-pressure form of FeOOH [J]. Nature, 2017, 547(7662): 205–208. doi: 10.1038/nature22823
    [21]
    LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
    [22]
    ZHANG J R, LIU H Y, MA Y M, et al. Direct H-He chemical association in superionic FeO2H2He at deep-Earth conditions [J]. National Science Review, 2022, 9(7): nwab168. doi: 10.1093/nsr/nwab168
    [23]
    CAVAZZONI C, CHIAROTTI G L, SCANDOLO S, et al. Superionic and metallic states of water and ammonia at giant planet conditions [J]. Science, 1999, 283(5398): 44–46. doi: 10.1126/science.283.5398.44
    [24]
    LIU H Y, YAO Y S, KLUG D D. Stable structures of He and H2O at high pressure [J]. Physical Review B, 2015, 91(1): 014102. doi: 10.1103/PhysRevB.91.014102
    [25]
    TEERATCHANAN P, HERMANN A. Computational phase diagrams of noble gas hydrates under pressure [J]. The Journal of Chemical Physics, 2015, 143(15): 154507. doi: 10.1063/1.4933371
    [26]
    SHI J M, CUI W W, HAO J, et al. Formation of ammonia-helium compounds at high pressure [J]. Nature Communications, 2020, 11(1): 3164. doi: 10.1038/s41467-020-16835-z
    [27]
    LIU C, GAO H, HERMANN A, et al. Plastic and superionic helium ammonia compounds under high pressure and high temperature [J]. Physical Review X, 2020, 10(2): 021007. doi: 10.1103/PhysRevX.10.021007
    [28]
    GAO H, LIU C, HERMANN A, et al. Coexistence of plastic and partially diffusive phases in a helium-methane compound [J]. National Science Review, 2020, 7(10): 1540–1547. doi: 10.1093/nsr/nwaa064
    [29]
    SHEN G Y, MEI Q, PRAKAPENKA V B, et al. Effect of helium on structure and compression behavior of SiO2 glass [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6004–6007. doi: 10.1073/pnas.1102361108
    [30]
    SATO T, FUNAMORI N, YAGI T. Helium penetrates into silica glass and reduces its compressibility [J]. Nature Communications, 2011, 2: 345. doi: 10.1038/ncomms1343
    [31]
    LI D, LIU Y, TIAN F B, et al. High-pressure structures of helium and carbon dioxide from first-principles calculations [J]. Solid State Communications, 2018, 283: 9–13. doi: 10.1016/j.ssc.2018.06.012
    [32]
    MONSERRAT B, MARTINEZ-CANALES M, NEEDS R J, et al. Helium-iron compounds at terapascal pressures [J]. Physical Review Letters, 2018, 121(1): 015301. doi: 10.1103/PhysRevLett.121.015301
    [33]
    DING S C, ZHANG P, YANG K, et al. Formation of solid SiO2He compound at high pressure and high temperature [J]. Physical Review B, 2022, 106(2): 024102. doi: 10.1103/PhysRevB.106.024102
    [34]
    EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [35]
    HOU J Y, WENG X J, OGANOV A R, et al. Helium-nitrogen mixtures at high pressure [J]. Physical Review B, 2021, 103(6): L060102. doi: 10.1103/PhysRevB.103.L060102
    [36]
    LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He−N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
    [37]
    DING S C, SHI J M, XIE J H, et al. Helium incorporation induced direct-gap silicides [J]. npj Computational Materials, 2021, 7(1): 89. doi: 10.1038/s41524-021-00558-w
    [38]
    PENG F, SONG X Q, LIU C, et al. Xenon iron oxides predicted as potential Xe hosts in Earth’s lower mantle [J]. Nature Communications, 2020, 11(1): 5227. doi: 10.1038/s41467-020-19107-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views(536) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return