Citation: | TIAN Yifan, LIU Hanyu. Progress on Compounds of Inert Element Helium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635 |
[1] |
BARTLETT N. Xenon hexafluoroplatinate (V) Xe+ [PtF6]– [J]. Proceedings of the Chemical Society London, 1962(6): 197–236.
|
[2] |
ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
|
[3] |
MIAO M S. Noble gases in solid compounds show a rich display of chemistry with enough pressure [J]. Frontiers in Chemistry, 2020, 8: 570492. doi: 10.3389/fchem.2020.570492
|
[4] |
MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
|
[5] |
WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
|
[6] |
WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
|
[7] |
SHAO X C, LV J, LIU P, et al. A symmetry-orientated divide-and-conquer method for crystal structure prediction [J]. The Journal of Chemical Physics, 2022, 156(1): 014105. doi: 10.1063/5.0074677
|
[8] |
XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
|
[9] |
ZHU L, LIU H Y, PICKARD C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core [J]. Nature Chemistry, 2014, 6(7): 644–648. doi: 10.1038/nchem.1925
|
[10] |
ZHANG J R, LV J, LI H F, et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions [J]. Physical Review Letters, 2018, 121(25): 255703. doi: 10.1103/PhysRevLett.121.255703
|
[11] |
STAVROU E, YAO Y S, GONCHAROV A F, et al. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions [J]. Physical Review Letters, 2018, 120(9): 096001. doi: 10.1103/PhysRevLett.120.096001
|
[12] |
LIU C, GAO H, WANG Y, et al. Multiple superionic states in helium-water compounds [J]. Nature Physics, 2019, 15(10): 1065–1070. doi: 10.1038/s41567-019-0568-7
|
[13] |
LOUBEYRE P, JEAN-LOUIS M, LETOULLEC R, et al. High pressure measurements of the He-Ne binary phase diagram at 296 K: evidence for the stability of a stoichiometric Ne(He)2 solid [J]. Physical Review Letters, 1993, 70(2): 178–181. doi: 10.1103/PhysRevLett.70.178
|
[14] |
DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
|
[15] |
LIU Z, BOTANA J, HERMANN A, et al. Reactivity of He with ionic compounds under high pressure [J]. Nature Communications, 2018, 9(1): 951. doi: 10.1038/s41467-018-03284-y
|
[16] |
XIONG Z H, TSUCHIYA T, VAN ORMAN J A. Helium and argon partitioning between liquid iron and silicate melt at high pressure [J]. Geophysical Research Letters, 2021, 48(3): e2020GL090769. doi: 10.1029/2020GL090769
|
[17] |
RIZO H, WALKER R J, CARLSON R W, et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts [J]. Science, 2016, 352(6287): 809–812. doi: 10.1126/science.aad8563
|
[18] |
JACKSON M G, CARLSON R W, KURZ M D, et al. Evidence for the survival of the oldest terrestrial mantle reservoir [J]. Nature, 2010, 466(7308): 853–856. doi: 10.1038/nature09287
|
[19] |
HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
|
[20] |
NISHI M, KUWAYAMA Y, TSUCHIYA J, et al. The pyrite-type high-pressure form of FeOOH [J]. Nature, 2017, 547(7662): 205–208. doi: 10.1038/nature22823
|
[21] |
LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
|
[22] |
ZHANG J R, LIU H Y, MA Y M, et al. Direct H-He chemical association in superionic FeO2H2He at deep-Earth conditions [J]. National Science Review, 2022, 9(7): nwab168. doi: 10.1093/nsr/nwab168
|
[23] |
CAVAZZONI C, CHIAROTTI G L, SCANDOLO S, et al. Superionic and metallic states of water and ammonia at giant planet conditions [J]. Science, 1999, 283(5398): 44–46. doi: 10.1126/science.283.5398.44
|
[24] |
LIU H Y, YAO Y S, KLUG D D. Stable structures of He and H2O at high pressure [J]. Physical Review B, 2015, 91(1): 014102. doi: 10.1103/PhysRevB.91.014102
|
[25] |
TEERATCHANAN P, HERMANN A. Computational phase diagrams of noble gas hydrates under pressure [J]. The Journal of Chemical Physics, 2015, 143(15): 154507. doi: 10.1063/1.4933371
|
[26] |
SHI J M, CUI W W, HAO J, et al. Formation of ammonia-helium compounds at high pressure [J]. Nature Communications, 2020, 11(1): 3164. doi: 10.1038/s41467-020-16835-z
|
[27] |
LIU C, GAO H, HERMANN A, et al. Plastic and superionic helium ammonia compounds under high pressure and high temperature [J]. Physical Review X, 2020, 10(2): 021007. doi: 10.1103/PhysRevX.10.021007
|
[28] |
GAO H, LIU C, HERMANN A, et al. Coexistence of plastic and partially diffusive phases in a helium-methane compound [J]. National Science Review, 2020, 7(10): 1540–1547. doi: 10.1093/nsr/nwaa064
|
[29] |
SHEN G Y, MEI Q, PRAKAPENKA V B, et al. Effect of helium on structure and compression behavior of SiO2 glass [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6004–6007. doi: 10.1073/pnas.1102361108
|
[30] |
SATO T, FUNAMORI N, YAGI T. Helium penetrates into silica glass and reduces its compressibility [J]. Nature Communications, 2011, 2: 345. doi: 10.1038/ncomms1343
|
[31] |
LI D, LIU Y, TIAN F B, et al. High-pressure structures of helium and carbon dioxide from first-principles calculations [J]. Solid State Communications, 2018, 283: 9–13. doi: 10.1016/j.ssc.2018.06.012
|
[32] |
MONSERRAT B, MARTINEZ-CANALES M, NEEDS R J, et al. Helium-iron compounds at terapascal pressures [J]. Physical Review Letters, 2018, 121(1): 015301. doi: 10.1103/PhysRevLett.121.015301
|
[33] |
DING S C, ZHANG P, YANG K, et al. Formation of solid SiO2He compound at high pressure and high temperature [J]. Physical Review B, 2022, 106(2): 024102. doi: 10.1103/PhysRevB.106.024102
|
[34] |
EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
|
[35] |
HOU J Y, WENG X J, OGANOV A R, et al. Helium-nitrogen mixtures at high pressure [J]. Physical Review B, 2021, 103(6): L060102. doi: 10.1103/PhysRevB.103.L060102
|
[36] |
LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He−N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
|
[37] |
DING S C, SHI J M, XIE J H, et al. Helium incorporation induced direct-gap silicides [J]. npj Computational Materials, 2021, 7(1): 89. doi: 10.1038/s41524-021-00558-w
|
[38] |
PENG F, SONG X Q, LIU C, et al. Xenon iron oxides predicted as potential Xe hosts in Earth’s lower mantle [J]. Nature Communications, 2020, 11(1): 5227. doi: 10.1038/s41467-020-19107-y
|