Citation: | ZHENG Feili, YAN Jian, HUANG Yanping, LUO Xuan, CHI Zhenhua, LYU Xindeng, CUI Tian. Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617 |
[1] |
KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and the Klein paradox in graphene [J]. Nature Physics, 2006, 2(9): 620–625. doi: 10.1038/nphys384
|
[2] |
FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers [J]. Physical Review Letters, 2006, 97(18): 187401. doi: 10.1103/PhysRevLett.97.187401
|
[3] |
BREC R, SCHLEICH D M, OUVRARD G, et al. Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites [J]. Inorganic Chemistry, 1979, 18(7): 1814–1818. doi: 10.1021/ic50197a018
|
[4] |
DUAN J M, CHAVA P, GHORBANI-ASL M, et al. Self-driven broadband photodetectors based on MoSe2/FePS3 van der Waals n-p type-Ⅱ heterostructures [J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11927–11936. doi: 10.1021/acsami.1c24308
|
[5] |
KUMAR R, JENJETI R N, AUSTERIA M P, et al. Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors [J]. Journal of Materials Chemistry C, 2019, 7(2): 324–329. doi: 10.1039/C8TC05011B
|
[6] |
LONG M S, SHEN Z, WANG R J, et al. Ultrasensitive solar-blind ultraviolet photodetector based on FePSe3/MoS2 heterostructure response to 10.6 µm [J]. Advanced Functional Materials, 2022, 32(34): 2204230. doi: 10.1002/adfm.202204230
|
[7] |
KIM K, LIM S Y, KIM J, et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy [J]. 2D Materials, 2019, 6(4): 041001. doi: 10.1088/2053-1583/ab27d5
|
[8] |
WIEDENMANN A, ROSSAT-MIGNOD J, LOUISY A, et al. Neutron diffraction study of the layered compounds MnPSe3 and FePSe3 [J]. Solid State Communications, 1981, 40(12): 1067–1072. doi: 10.1016/0038-1098(81)90253-2
|
[9] |
LEE J U, LEE S, RYOO J H, et al. Ising-type magnetic ordering in atomically thin FePS3 [J]. Nano Letters, 2016, 16(12): 7433–7438. doi: 10.1021/acs.nanolett.6b03052
|
[10] |
ZHANG J M, NIE Y Z, WANG X G, et al. Strain modulation of magnetic properties of monolayer and bilayer FePS3 antiferromagnet [J]. Journal of Magnetism and Magnetic Materials, 2021, 525: 167687. doi: 10.1016/j.jmmm.2020.167687
|
[11] |
HU G J, ZHU Y M, XIANG J X, et al. Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS3/Fe3GeTe2 stacking heterostructure [J]. ACS Nano, 2020, 14(9): 12037–12044. doi: 10.1021/acsnano.0c05252
|
[12] |
GU Y, ZHANG S Q, ZOU X L. Tunable magnetism in layered CoPS3 by pressure and carrier doping [J]. Science China Materials, 2021, 64(3): 673–682. doi: 10.1007/s40843-020-1453-0
|
[13] |
WANG Y G, YING J J, ZHOU Z Y, et al. Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover [J]. Nature Communications, 2018, 9(1): 1914. doi: 10.1038/s41467-018-04326-1
|
[14] |
DU K Z, WANG X Z, LIU Y, et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides [J]. ACS Nano, 2016, 10(2): 1738–1743. doi: 10.1021/acsnano.5b05927
|
[15] |
FAN X F, CHANG C H, ZHENG W T, et al. The electronic properties of single-layer and multilayer MoS2 under high pressure [J]. The Journal of Physical Chemistry C, 2015, 119(19): 10189–10196. doi: 10.1021/acs.jpcc.5b00317
|
[16] |
NAYAK A P, PANDEY T, VOIRY D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide [J]. Nano Letters, 2015, 15(1): 346–353. doi: 10.1021/nl5036397
|
[17] |
ZHENG Y S, JIANG X X, XUE X X, et al. Ab initio study of pressure-driven phase transition in FePS3 and FePSe3 [J]. Physical Review B, 2019, 100(17): 174102. doi: 10.1103/PhysRevB.100.174102
|
[18] |
EVARESTOV R A, KUZMIN A. Topological analysis of chemical bonding in the layered FePSe3 upon pressure-induced phase transitions [J]. Journal of Computational Chemistry, 2020, 41(31): 2610–2623. doi: 10.1002/jcc.26416
|
[19] |
SCAGLIOTTI M, JOUANNE M, BALKANSKI M, et al. Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals [J]. Physical Review B, 1987, 35(13): 7097–7104. doi: 10.1103/PhysRevB.35.7097
|
[20] |
MUKHERJEE D, AUSTERIA P M, SAMPATH S. Few-layer iron selenophosphate, FePSe3: efficient electrocatalyst toward water splitting and oxygen reduction reactions [J]. ACS Applied Energy Materials, 2018, 1(1): 220–231. doi: 10.1021/acsaem.7b00101
|
[21] |
XU T F, LUO M, SHEN N M, et al. Ternary 2D layered material FePSe3 and near-infrared photodetector [J]. Advanced Electronic Materials, 2021, 7(8): 2100207. doi: 10.1002/aelm.202100207
|
[22] |
MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
|
[23] |
PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
|
[24] |
MEUNIER M. Introduction to materials studio [J]. EPJ Web of Conferences, 2012, 30: 04001. doi: 10.1051/epjconf/20123004001
|
[25] |
HAINES C R S, COAK M J, WILDES A R, et al. Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3 [J]. Physical Review Letters, 2018, 121(26): 266801. doi: 10.1103/PhysRevLett.121.266801
|
[26] |
BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
|
[27] |
李彬峰. 二维材料二硫化钼以及铁磷硫/铁磷硒的材料制备及拉曼表征 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 32−34.
LI B F. Synthesis and Raman characteristic of two dimensional material molybdenum disulfide and iron phosphorus sulfur (selenium) [D]. Harbin: Harbin Institute of Technology, 2020: 32−34.
|
[28] |
QI Y P, NAUMOV P G, ALI M N, et al. Superconductivity in Weyl semimetal candidate MoTe2 [J]. Nature Communications, 2016, 7: 11038. doi: 10.1038/ncomms11038
|
[29] |
PAN X C, CHEN X L, LIU H M, et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride [J]. Nature Communications, 2015, 6: 7805. doi: 10.1038/ncomms8805
|
[1] | GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853 |
[2] | LU Zhenyu, LI Wenbin, YAO Wenjin, PENG Hang. Experimental Study on Compression and Fracture Characteristics of Two Kinds of Rocks under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605 |
[3] | DAI Jintao, WANG Wenqiang. A Numerical Study on the Dynamic Tensile Behavior of Helical Auxetic Yarns[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024204. doi: 10.11858/gywlxb.20200570 |
[4] | GAN Yuanchao. Advances of Experimental and Theoretical Models of Magnesium Twin Deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040108. doi: 10.11858/gywlxb.20210719 |
[5] | LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874 |
[6] | WANG Bingxiang, CHENG Pufeng, ZHENG Yuxuan, ZHOU Fenghua. Attenuation Law of Stress Wave in Granular Particles[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508 |
[7] | YU Yin, LI Yuanyuan, HE Hongliang, WANG Wenqiang. Mesoscale Lattice Model for Dynamic Fracture of Brittle Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707 |
[8] | LEI Zhongqi, YAO Xiaohu, LONG Shuchang, CHANG Jianhu, WANG Haibo. Dynamic Compression Characteristics of Polystyrene Foam Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655 |
[9] | MA Qiqi, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719 |
[10] | LI Xueyan, LI Zhibin, ZHANG Duo. Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642 |
[11] | REN Shanliang, WEN Heming, ZHOU Lin. Theoretical Study of the Perforation of Double-Layered Metal Targets without Spacing Struck by Flat-Ended Projectiles[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035103. doi: 10.11858/gywlxb.20170695 |
[12] | WANG Peng, LI Shi-Qiang, YU Guo-Ji, WU Gui-Ying. Dynamic Crushing Behavior of Graded Hollow Cylindrical Shell under Axial Impact Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 778-784. doi: 10.11858/gywlxb.2017.06.013 |
[13] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[14] | ZHANG Yue, LI Shi-Qiang, WANG Zhi-Hua, WU Gui-Ying. Dynamic Crushing Response of Self-Similar Second Order Hierarchical Square Honeycombs[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 358-363. doi: 10.11858/gywlxb.2017.04.002 |
[15] | XIA Ming, HUANG Zheng-Xiang, GU Xiao-Hui, WANG Ye-Zhong. Study on the Magnetic Field of High Field Magnet Powered by Flux Compression Generator[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 433-441. doi: 10.11858/gywlxb.2012.04.012 |
[16] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[17] | SUN Yu-Xin, ZHANG Jin, LI Yong-Chi, HU Shi-Sheng, DONG Jie. Propagation of Stress wave and Spallation of Cylindrical Tube under External Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 319-324 . doi: 10.11858/gywlxb.2005.04.006 |
[18] | XU Ming-Li, ZHANG Ruo-Qi, ZHANG Guang-Ying. Study of Stress Wave Propagation in Laminated Media Using MOC[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 182-188 . doi: 10.11858/gywlxb.2000.03.005 |
[19] | Zhou Nan. The Thermal Shock Wave Induced by X-Ray and Electron Beam Radiation and the Compressive Stress Wave[J]. Chinese Journal of High Pressure Physics, 1994, 8(3): 190-199 . doi: 10.11858/gywlxb.1994.03.006 |
[20] | WANG Chun-Kui, LIU Xiao-Ping. Dynamic Properties of LY-12 Aluminium Alloy under High Temperature Condensed StateHigh Temperature Elastic Modulus Measurements[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 27-34 . doi: 10.11858/gywlxb.1991.01.005 |