Citation: | HUANG Cuiping, DENG Xiaolin. Crashworthiness Analysis of Circular Chiral Multicellular Tubes under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034107. doi: 10.11858/gywlxb.20230616 |
[1] |
GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. doi: 10.1016/S0020-7403(01)00031-5
|
[2] |
ANDREWS K R F, ENGLAND G L, GHANI E. Classification of the axial collapse of cylindrical tubes under quasi-static loading [J]. International Journal of Mechanical Sciences, 1983, 25(9/10): 687–696. doi: 10.1016/0020-7403(83)90076-0
|
[3] |
NIA A A, HAMEDANI J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries [J]. Thin-Walled Structures, 2010, 48(12): 946–954. doi: 10.1016/j.tws.2010.07.003
|
[4] |
SONG J F, XU S C, LIU S F, et al. Study on the crashworthiness of bio-inspired multi-cell tube under axial impact [J]. International Journal of Crashworthiness, 2022, 27(2): 390–399. doi: 10.1080/13588265.2020.1807686
|
[5] |
LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. doi: 10.1016/j.ijmecsci.2020.106038
|
[6] |
ZHANG J X, YE Y, ZHU Y Q, et al. On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core [J]. International Journal of Solids and Structures, 2020, 202: 111–125. doi: 10.1016/j.ijsolstr.2020.06.021
|
[7] |
ZHANG J X, GUO H Y. Large deflection of rectangular sandwich tubes with metal foam core [J]. Composite Structures, 2022, 293: 115745. doi: 10.1016/j.compstruct.2022.115745
|
[8] |
ZHANG J X, YE Y, YUAN H, et al. A theoretical study of low-velocity impact of metal foam-filled circular tubes [J]. Thin-Walled Structures, 2020, 148: 106525. doi: 10.1016/j.tws.2019.106525
|
[9] |
SINGH S K, PANDEY R, UPADHYAY A. A numerical study on combined effects of groove shape and numbers on crashworthiness characteristics of thin-walled tube [J]. Materials Today: Proceedings, 2021, 44: 4381–4386. doi: 10.1016/j.matpr.2020.10.571
|
[10] |
ZHANG J X, DU J L, MIAO F X, et al. Plastic behavior of slender circular metal foam-filled tubes under transverse loading [J]. Thin-Walled Structures, 2022, 171: 108768. doi: 10.1016/j.tws.2021.108768
|
[11] |
HE Q, WANG Y H, SHI X N, et al. Crushing behavior on the cylindrical tube based on lotus leaf vein branched structure [J]. Mechanics of Materials, 2022, 165: 104205. doi: 10.1016/j.mechmat.2021.104205
|
[12] |
HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. doi: 10.1016/j.tws.2021.108315
|
[13] |
PENG Y, LI T, BAO C H, et al. Performance analysis and multi-objective optimization of bionic dendritic furcal energy-absorbing structures for trains [J]. International Journal of Mechanical Sciences, 2023, 246: 108145. doi: 10.1016/j.ijmecsci.2023.108145
|
[14] |
WEI Z Q, XU X H. Numerical study on impact resistance of novel multilevel bionic thin-walled structures [J]. Journal of Materials Research and Technology, 2022, 16: 1770–1780. doi: 10.1016/j.jmrt.2021.12.105
|
[15] |
FAN Z X, YE G Y, LI S, et al. Compression performance and failure mechanism of honeycomb structures fabricated with reinforced wood [J]. Structures, 2023, 48: 1868–1882. doi: 10.1016/j.istruc.2023.01.087
|
[16] |
WANG S, LIU H T. Energy absorption performance of the auxetic arc-curved honeycomb with thickness and arc angle gradient based on additive manufacturing [J]. Materials Today Communications, 2023, 35: 105515. doi: 10.1016/j.mtcomm.2023.105515
|
[17] |
CUI Z, QI J Q, TIE Y, et al. Research on the energy absorption properties of origami-based honeycombs [J]. Thin-Walled Structures, 2023, 184: 110520. doi: 10.1016/j.tws.2022.110520
|
[18] |
WANG X J, JIA K C, LIU Y, et al. In-plane impact response of graded foam concrete-filled auxetic honeycombs [J]. Materials, 2023, 16(2): 745. doi: 10.3390/ma16020745
|
[19] |
LU Q Y, QI D X, LI Y, et al. Impact energy absorption performances of ordinary and hierarchical chiral structures [J]. Thin-Walled Structures, 2019, 140: 495–505. doi: 10.1016/j.tws.2019.04.008
|
[20] |
KARAKOÇ A, TACIROǦLU E. Effects of morphology and topology on the effective stiffness of chiral cellular materials in the transverse plane [J]. Advances in Materials Science and Engineering, 2016, 2016: 6534648. doi: 10.1155/2016/6534648
|
[21] |
ZHANG Y, REN X, JIANG W, et al. In-plane compressive properties of assembled auxetic chiral honeycomb composed of slotted wave plate [J]. Materials & Design, 2022, 221: 110956. doi: 10.1016/j.matdes.2022.110956
|
[22] |
QI D X, LU Q Y, HE C W, et al. Impact energy absorption of functionally graded chiral honeycomb structures [J]. Extreme Mechanics Letters, 2019, 32: 100568. doi: 10.1016/j.eml.2019.100568
|
[23] |
LI K Y, ZHANG Y, SU L, et al. Crushing mechanics of anti-tetrachiral column [J]. Thin-Walled Structures, 2022, 175: 109253. doi: 10.1016/j.tws.2022.109253
|
[24] |
GONG C, BAI Z H, LV J Y, et al. Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems [J]. Thin-Walled Structures, 2020, 157: 107081. doi: 10.1016/j.tws.2020.107081
|
[25] |
ZHENG G, WU S Z, SUN G Y, et al. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes [J]. International Journal of Mechanical Sciences, 2014, 87: 226–240. doi: 10.1016/j.ijmecsci.2014.06.002
|
[1] | SONG Xianqi, LIU Chang, LIU Zikai, WANG Jianyun, LI Quan. Structural and Electronic Properties of Solid Hydrogen at Non-Hydrostatic Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050102. doi: 10.11858/gywlxb.20230720 |
[2] | SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559 |
[3] | ZHANG Qiang, PENG Fang, LIU Dong-Qiong, FAN Cong, LIANG Hao, GUAN Shi-Xue, TAN Li-Jie. Influence of the Strength of Materials on Pressure Calibration under Non-Hydrostatic Compression[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 353-357. doi: 10.11858/gywlxb.2017.04.001 |
[4] | RAN Xiang-Tian, HE Duan-Wei, LIU Jing, WANG Qi-Ming, WANG Pei, WANG Jiang-Hua, CHEN Hai-Hua, PENG Fang. Stress Transmission of Materials with Different Strengths under Non-Hydrostatic Compression[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 205-210. doi: 10.11858/gywlxb.2013.02.006 |
[5] | CHEN Yi, HUANG Yong-Jun, FEI Teng. Calibration of Standard Hydrophones in the Frequency Range of 20 Hz to 200 kHz at 10 MPa Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 454-460. doi: 10.11858/gywlxb.2013.03.021 |
[6] | YI Jian-Yong, SUN Chuan-Fan, WANG Yong-Tao, DONG Peng, WANG Huan-Yu, HU Xiao-Song. Design of Ultra High Hydrostatic Pressure Equipment and Experimental Research on Enzyme Inactivation[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 375-381. doi: 10.11858/gywlxb.2012.04.003 |
[7] | SHI Wei-Guang, WU Hui-Jie, ZHOU Guo-Qiang, JIANG Qi-Feng, CUI Yin-Qiu, LIU Xiao-Yang. Molecular Analysis of Stable Mutagenesis in Cucumber Induced by High Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 379-384 . doi: 10.11858/gywlxb.2011.04.015 |
[8] | ZHANG Yi, BI Yan, CAI Ling-Cang, XU Ji-An. Ultrasonic Velocity Measurement and Pressure Calibration of Single Crystal MgO under Hydrostatic Pressure Load[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 206-212 . doi: 10.11858/gywlxb.2010.03.008 |
[9] | LIU Xun-Cheng, ZHANG Mei, DUAN Jun. Construction and Analysis of SSH-cDNA Library Induced by High Pressure in Rice Seeds during Germination[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 370-376 . doi: 10.11858/gywlxb.2008.04.006 |
[10] | BAI Cheng-Ke, LI Gui-Shuang, DUAN Jun, PENG Chang-Lian, WENG Ke-Nan, XU Shi-Ping. Activities of Antioxidative Enzymes and the Responds to Cold Stress of Rice Treated by High Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 235-240 . doi: 10.11858/gywlxb.2005.03.008 |
[11] | XU Shi-Ping, GUO Li-Xiu, WENG Ke-Nan, DUAN Jun, Lü Guang-Cai. Pressure Induced Rice Mutation and ISSR Analysis of the Mutants[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 305-311 . doi: 10.11858/gywlxb.2005.04.004 |
[12] | SHEN Si-Le, XU Shi-Ping, WENG Ke-Nan, TAN Mei, ZHANG Jian-Feng, LONG Guo-Hui, JIA Xiao-Peng, CHI Yuan-Bin, LIU Bao, ZOU Guang-Tian. Molecular Analysis of Stable Mutagenesis Rice Cultivar Induced by High Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 289-294 . doi: 10.11858/gywlxb.2004.04.001 |
[13] | ZHOU Bo, WANG Ru-Ju, ZHANG You-Lin, LI Feng-Ying, YU Ri-Cheng, JIN Chang-Qing. Elastic Properties of MgCNi3 Superconductor under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 157-160 . doi: 10.11858/gywlxb.2003.02.015 |
[14] | BAI Cheng-Ke, LI Gui-Shuang, DUAN Jun, PENG Chang-Lian, DUAN Zhong-Gang, WENG KeNan, XU Shi-Ping. Effect of High Hydrostatic Pressure on Seeds Germination and Seedling Isoenzyme in Rice (Oryza sativa L.)[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 283-289 . doi: 10.11858/gywlxb.2003.04.007 |
[15] | LI Gui-Shuang, BAI Cheng-Ke, DUAN Jun, PENG Chang-Lian, WENG Ke-Nan, LIU Shu-Dong. Effect of High Hydrostatic Pressure Treatment on Physiological Characteristics of Rice Plants (Oryza sativa L.)[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 122-128 . doi: 10.11858/gywlxb.2003.02.008 |
[16] | XU Shi-Ping, LIAO Yao-Ping, WENG Ke-Nan, XIAO Wan-Sheng, CHEN Zhao-Ming, Lü Guang-Cai, HE Xiu-Ying. Pressure Induced Rice Mutation and Effects of High Hydrostatic Pressure on the Growth and Development of Rice[J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 241-248 . doi: 10.11858/gywlxb.2001.04.001 |
[17] | CHI Yuan-Bin, MA Xiao-Fan, CUI Tian, CUI Qi-Liang, JIN Zeng-Sun. Effect of Hydrostatic Pressure on Growth and Breeding of Bacteria in Raw Milk[J]. Chinese Journal of High Pressure Physics, 1995, 9(3): 224-227 . doi: 10.11858/gywlxb.1995.03.011 |
[18] | WANG Li-Jun, Ming L C, Manghnani M H. Study on Compressive Behavior of -Fe2SiO4 under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 290-295 . doi: 10.11858/gywlxb.1994.04.008 |
[19] | ZHA Chang-Sheng, ZHAO Shu-Hui. Optical Spectroscopic Experiments under Quasi-hydrostatic Pressure of 126.5 GPa[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 42-49 . doi: 10.11858/gywlxb.1990.01.007 |
[20] | LIU Zhen-Xian, CUI Qi-Liang, ZOU Guang-Tian. The Generation of 90 GPa Quasi-Hydrostatic Pressures and the Measurements of Pressure Distribution[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 284-289 . doi: 10.11858/gywlxb.1989.04.004 |