Volume 37 Issue 3
Jun 2023
Turn off MathJax
Article Contents
ZHANG Hongxue, LIU Weiqun. Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615
Citation: ZHANG Hongxue, LIU Weiqun. Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615

Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling

doi: 10.11858/gywlxb.20230615
  • Received Date: 14 Feb 2023
  • Rev Recd Date: 03 Mar 2023
  • Accepted Date: 28 Mar 2023
  • Issue Publish Date: 05 Jun 2023
  • In order to study the evolution mechanism of shale permeability under thermal-fluid-solid coupling, the effective stress-permeability model of shale is developed considering the impact of thermal desorption and effective stress and thermal expansion on shale permeability. The proposed model is capable of revealing the influence mechanism of sorption strain and thermal expansion strain on shale permeability. Based on the model and the elastic theory of porous media, the thermal induced desorption permeability model of shale gas reservoirs under uniaxial strain condition was established. The model can discuss the evolution mechanism of shale permeability with temperature and pore pressure. The validity and accuracy of the model was verified against the laboratory measurements of shale core permeability. The following results were obtained: (1) The thermal induced desorption permeability model can fit the permeability of Marcellus shale under constant pressure and variable temperature. (2) The evolution mechanism of shale permeability with pore pressure under constant temperature is explored. The evolution law of permeability under constant temperature is U-shaped. The rebound of permeability with pore pressure decrease is less obvious with the increase of temperature. (3) The evolution mechanism of shale permeability with temperature under constant pressure condition is analyzed. The evolution law of permeability with temperature under constant pressure condition presents an inverted “U” shape. The influence of temperature on permeability is less with the increase of pore pressure. (4) The sensitivity analysis of thermal desorption permeability model under constant temperature and pressure was carried out. The larger the Poisson’s ratio is, the larger the permeability ratio gradient is. The larger the pore volume modulus, the smaller the permeability ratio gradient. At constant pore pressure, when the linear expansion coefficient is larger than the critical value or the Langmuir bulk strain is smaller than the critical value, the permeability evolution does not show an inverted “U” shape. At constant temperature, when Langmuir strain is less than critical value, permeability evolution does not show “U” shape.

     

  • loading
  • [1]
    张金川, 林腊梅, 李玉喜, 等. 页岩气资源评价方法与技术: 概率体积法 [J]. 地学前缘, 2012, 19(2): 184–191.

    ZHANG J C, LIN L M, LI Y X, et al. The method of shale gas assessment: probability volume method [J]. Earth Science Frontiers, 2012, 19(2): 184–191.
    [2]
    李敏, 庞雄奇, 罗冰, 等. 生烃潜力法在深层页岩气资源评价中的应用——以四川盆地五峰——龙马溪组优质烃源岩为例 [J]. 中国矿业大学学报, 2021, 50(6): 1096–1107. doi: 10.13247/j.cnki.jcumt.001301

    LI M, PANG X Q, LUO B, et al. Application of hydrocarbon generation potential method to deep shale gas resource evaluation: a case study of high-quality source rocks of the Wufeng-Longmaxi formation in the Sichuan Basin [J]. Journal of China University of Mining & Technology, 2021, 50(6): 1096–1107. doi: 10.13247/j.cnki.jcumt.001301
    [3]
    GENSTERBLUM Y, MERKEL A, BUSCH A, et al. Gas saturation and CO2 enhancement potential of coalbed methane reservoirs as a function of depth [J]. AAPG Bulletin, 2014, 98(2): 395–420. doi: 10.1306/07021312128
    [4]
    GENG Y D, LIANG W G, LIU J, et al. Evolution of pore and fracture structure of oil shale under high temperature and high pressure [J]. Energy & Fuels, 2017, 31(10): 10404–10413. doi: 10.1021/acs.energyfuels.7b01071
    [5]
    赵瑜, 王超林, 曹汉, 等. 页岩渗流模型及孔压与温度影响机理研究 [J]. 煤炭学报, 2018, 43(6): 1754–1760. doi: 10.13225/j.cnki.jccs.2017.1404

    ZHAO Y, WANG C L, CAO H, et al. Influencing mechanism and modelling study of pore pressure and temperature on shale permeability [J]. Journal of China Coal Society, 2018, 43(6): 1754–1760. doi: 10.13225/j.cnki.jccs.2017.1404
    [6]
    WANG K, DU F, WANG G D, et al. Investigation of gas pressure and temperature effects on the permeability and steady-state time of Chinese anthracite coal: an experimental study [J]. Journal of Natural Gas Science and Engineering, 2017, 40: 179–188. doi: 10.1016/j.jngse.2017.02.014
    [7]
    吴迪, 王挺, 刘雪莹, 等. 页岩渗透特性受热力条件影响的实验研究 [J]. 实验力学, 2020, 35(3): 539–546. doi: 10.7520/1001-4888-18-230

    WU D, WANG T, LIU X Y, et al. Experimental study on the influence of thermal conditions on shale permeability characteristics [J]. Journal of Experimental Mechanics, 2020, 35(3): 539–546. doi: 10.7520/1001-4888-18-230
    [8]
    张道川, 周军平, 鲜学福, 等. 多场耦合作用下页岩渗透特性实验研究 [J]. 地下空间与工程学报, 2018, 14(3): 613–621.

    ZHANG D C, ZHOU J P, XIAN X F, et al. Experiment study on the coupling multi-field effect on the dynamic variation of permeability in shale [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(3): 613–621.
    [9]
    李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析 [J]. 煤炭学报, 2020, 45(2): 626–632. doi: 10.13225/j.cnki.jccs.2019.0146

    LI B B, GAO Z, YANG K, et al. Analysis of coal permeability evolution mechanism considering the effect of temperature and pore pressure [J]. Journal of China Coal Society, 2020, 45(2): 626–632. doi: 10.13225/j.cnki.jccs.2019.0146
    [10]
    WANG G Y, YANG D, ZHAO Y S, et al. Experimental investigation on anisotropic permeability and its relationship with anisotropic thermal cracking of oil shale under high temperature and triaxial stress [J]. Applied Thermal Engineering, 2019, 146: 718–725. doi: 10.1016/j.applthermaleng.2018.10.005
    [11]
    SCHWARTZ B, ELSWORTH D. Inverted U-shaped permeability enhancement due to thermally induced desorption determined from strain-based analysis of experiments on shale at constant pore pressure [J]. Fuel, 2021, 302: 121178. doi: 10.1016/j.fuel.2021.121178
    [12]
    TENG T, WANG J G, GAO F, et al. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 319–333. doi: 10.1016/j.jngse.2016.04.034
    [13]
    JU Y, WANG J G, WANG H J, et al. CO2 permeability of fractured coal subject to confining pressures and elevated temperature: experiments and modeling [J]. Science China Technological Sciences, 2016, 59(12): 1931–1942. doi: 10.1007/s11431-016-0478-5
    [14]
    SINHA S, BRAUN E M, DETERMAN M D, et al. Steady-state permeability measurements on intact shale samples at reservoir conditions-effect of stress, temperature, pressure, and type of gas [C]//SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE, 2016.
    [15]
    张宏学, 刘卫群. 非平衡解吸状态下页岩气储层渗透率演化机制 [J]. 岩土力学, 2021, 42(10): 2696–2704. doi: 10.16285/j.rsm.2020.1875

    ZHANG H X, LIU W Q. Permeability evolution mechanism of shale gas reservoir in non-equilibrium desorption state [J]. Rock and Soil Mechanics, 2021, 42(10): 2696–2704. doi: 10.16285/j.rsm.2020.1875
    [16]
    MCKEE C R, BUMB A C, KOENIG R A. Stress-dependent permeability and porosity of coal and other geologic formations [J]. SPE Formation Evaluation, 1988, 3(1): 81–91. doi: 10.2118/12858-PA
    [17]
    SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals [C]//SPE Rocky Mountain Regional Meeting. Casper, Wyoming: SPE, 1992.
    [18]
    CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
    [19]
    张宏学. 页岩储层渗流-应力耦合模型及应用 [D]. 徐州: 中国矿业大学, 2015.

    ZHANG H X. Seepage and stress coupling model for shale reservoir and its application [D]. Xuzhou: China University of Mining and Technology, 2015.
    [20]
    张宏学, 刘卫群. 海陆过渡相煤系页岩的渗流特征 [J]. 高压物理学报, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556

    ZHANG H X, LIU W Q. Seepage of marine-terrigenous facies coal measures shale [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
    [21]
    LI X, ELSWORTH D. Geomechanics of CO2 enhanced shale gas recovery [J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1607–1619. doi: 10.1016/j.jngse.2014.08.010
    [22]
    郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响 [J]. 石油勘探与开发, 2013, 40(4): 481–485. doi: 10.11698/PED.2013.04.14

    GUO W, XIONG W, GAO S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas [J]. Petroleum Exploration and Development, 2013, 40(4): 481–485. doi: 10.11698/PED.2013.04.14
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(181) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return