Citation: | ZHANG Hongxue, LIU Weiqun. Evolution Mechanism of Shale Gas Reservoirs Permeability under Thermal-Fluid-Solid Coupling[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035303. doi: 10.11858/gywlxb.20230615 |
[1] |
张金川, 林腊梅, 李玉喜, 等. 页岩气资源评价方法与技术: 概率体积法 [J]. 地学前缘, 2012, 19(2): 184–191.
ZHANG J C, LIN L M, LI Y X, et al. The method of shale gas assessment: probability volume method [J]. Earth Science Frontiers, 2012, 19(2): 184–191.
|
[2] |
李敏, 庞雄奇, 罗冰, 等. 生烃潜力法在深层页岩气资源评价中的应用——以四川盆地五峰——龙马溪组优质烃源岩为例 [J]. 中国矿业大学学报, 2021, 50(6): 1096–1107. doi: 10.13247/j.cnki.jcumt.001301
LI M, PANG X Q, LUO B, et al. Application of hydrocarbon generation potential method to deep shale gas resource evaluation: a case study of high-quality source rocks of the Wufeng-Longmaxi formation in the Sichuan Basin [J]. Journal of China University of Mining & Technology, 2021, 50(6): 1096–1107. doi: 10.13247/j.cnki.jcumt.001301
|
[3] |
GENSTERBLUM Y, MERKEL A, BUSCH A, et al. Gas saturation and CO2 enhancement potential of coalbed methane reservoirs as a function of depth [J]. AAPG Bulletin, 2014, 98(2): 395–420. doi: 10.1306/07021312128
|
[4] |
GENG Y D, LIANG W G, LIU J, et al. Evolution of pore and fracture structure of oil shale under high temperature and high pressure [J]. Energy & Fuels, 2017, 31(10): 10404–10413. doi: 10.1021/acs.energyfuels.7b01071
|
[5] |
赵瑜, 王超林, 曹汉, 等. 页岩渗流模型及孔压与温度影响机理研究 [J]. 煤炭学报, 2018, 43(6): 1754–1760. doi: 10.13225/j.cnki.jccs.2017.1404
ZHAO Y, WANG C L, CAO H, et al. Influencing mechanism and modelling study of pore pressure and temperature on shale permeability [J]. Journal of China Coal Society, 2018, 43(6): 1754–1760. doi: 10.13225/j.cnki.jccs.2017.1404
|
[6] |
WANG K, DU F, WANG G D, et al. Investigation of gas pressure and temperature effects on the permeability and steady-state time of Chinese anthracite coal: an experimental study [J]. Journal of Natural Gas Science and Engineering, 2017, 40: 179–188. doi: 10.1016/j.jngse.2017.02.014
|
[7] |
吴迪, 王挺, 刘雪莹, 等. 页岩渗透特性受热力条件影响的实验研究 [J]. 实验力学, 2020, 35(3): 539–546. doi: 10.7520/1001-4888-18-230
WU D, WANG T, LIU X Y, et al. Experimental study on the influence of thermal conditions on shale permeability characteristics [J]. Journal of Experimental Mechanics, 2020, 35(3): 539–546. doi: 10.7520/1001-4888-18-230
|
[8] |
张道川, 周军平, 鲜学福, 等. 多场耦合作用下页岩渗透特性实验研究 [J]. 地下空间与工程学报, 2018, 14(3): 613–621.
ZHANG D C, ZHOU J P, XIAN X F, et al. Experiment study on the coupling multi-field effect on the dynamic variation of permeability in shale [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(3): 613–621.
|
[9] |
李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析 [J]. 煤炭学报, 2020, 45(2): 626–632. doi: 10.13225/j.cnki.jccs.2019.0146
LI B B, GAO Z, YANG K, et al. Analysis of coal permeability evolution mechanism considering the effect of temperature and pore pressure [J]. Journal of China Coal Society, 2020, 45(2): 626–632. doi: 10.13225/j.cnki.jccs.2019.0146
|
[10] |
WANG G Y, YANG D, ZHAO Y S, et al. Experimental investigation on anisotropic permeability and its relationship with anisotropic thermal cracking of oil shale under high temperature and triaxial stress [J]. Applied Thermal Engineering, 2019, 146: 718–725. doi: 10.1016/j.applthermaleng.2018.10.005
|
[11] |
SCHWARTZ B, ELSWORTH D. Inverted U-shaped permeability enhancement due to thermally induced desorption determined from strain-based analysis of experiments on shale at constant pore pressure [J]. Fuel, 2021, 302: 121178. doi: 10.1016/j.fuel.2021.121178
|
[12] |
TENG T, WANG J G, GAO F, et al. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 319–333. doi: 10.1016/j.jngse.2016.04.034
|
[13] |
JU Y, WANG J G, WANG H J, et al. CO2 permeability of fractured coal subject to confining pressures and elevated temperature: experiments and modeling [J]. Science China Technological Sciences, 2016, 59(12): 1931–1942. doi: 10.1007/s11431-016-0478-5
|
[14] |
SINHA S, BRAUN E M, DETERMAN M D, et al. Steady-state permeability measurements on intact shale samples at reservoir conditions-effect of stress, temperature, pressure, and type of gas [C]//SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE, 2016.
|
[15] |
张宏学, 刘卫群. 非平衡解吸状态下页岩气储层渗透率演化机制 [J]. 岩土力学, 2021, 42(10): 2696–2704. doi: 10.16285/j.rsm.2020.1875
ZHANG H X, LIU W Q. Permeability evolution mechanism of shale gas reservoir in non-equilibrium desorption state [J]. Rock and Soil Mechanics, 2021, 42(10): 2696–2704. doi: 10.16285/j.rsm.2020.1875
|
[16] |
MCKEE C R, BUMB A C, KOENIG R A. Stress-dependent permeability and porosity of coal and other geologic formations [J]. SPE Formation Evaluation, 1988, 3(1): 81–91. doi: 10.2118/12858-PA
|
[17] |
SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals [C]//SPE Rocky Mountain Regional Meeting. Casper, Wyoming: SPE, 1992.
|
[18] |
CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
|
[19] |
张宏学. 页岩储层渗流-应力耦合模型及应用 [D]. 徐州: 中国矿业大学, 2015.
ZHANG H X. Seepage and stress coupling model for shale reservoir and its application [D]. Xuzhou: China University of Mining and Technology, 2015.
|
[20] |
张宏学, 刘卫群. 海陆过渡相煤系页岩的渗流特征 [J]. 高压物理学报, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
ZHANG H X, LIU W Q. Seepage of marine-terrigenous facies coal measures shale [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
|
[21] |
LI X, ELSWORTH D. Geomechanics of CO2 enhanced shale gas recovery [J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1607–1619. doi: 10.1016/j.jngse.2014.08.010
|
[22] |
郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响 [J]. 石油勘探与开发, 2013, 40(4): 481–485. doi: 10.11698/PED.2013.04.14
GUO W, XIONG W, GAO S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas [J]. Petroleum Exploration and Development, 2013, 40(4): 481–485. doi: 10.11698/PED.2013.04.14
|
[1] | WANG Ganghua, XIE Long, XIAO Bo, WANG Qiang, TANG Jiupeng, OU Haibin, KAN Mingxian, DUAN Shuchao. Electric Explosion Early Process Analysis of Metal Bridge Foil Based on an Electromagnetic-Thermal-Mechanical Model[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 012301. doi: 10.11858/gywlxb.20230711 |
[2] | ZHOU Mengqian, ZHAN Jinhui, HE Wen, CAO Xiuxia, ZHANG Wei, LIU Xiaoxing. Force-Thermal Coupling Response of Sapphire under Impact Loading Based on Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064204. doi: 10.11858/gywlxb.20240749 |
[3] | XU Rui, ZHI Xiaoqi, YU Yongli, GAO Feng. Response Mechanism of Fuse with Different Structures under Thermal Stimulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720 |
[4] | ZHANG Hongxue, LIU Weiqun, LI Pan. Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709 |
[5] | ZHANG Hongxue, LIU Weiqun. Seepage of Marine-Terrigenous Facies Coal Measures Shale[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556 |
[6] | BAI Jing-Song, LIU Kun, ZHANG Hong-Ping, LI Lei, LI Ping. Application of the MVPPM-Based Fluid-Solid Coupling Method to the Explosion Vessel Simulations[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 343-351. doi: 10.11858/gywlxb.2013.03.005 |
[7] | WANG Jian, FU Huan, WEN Shang-Gang, TAN Duo-Wang, GAO Da-Yuan. Thermal Aged Effects on Detonation Performance of JOB-9003 Explosive[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 773-777. doi: 10.11858/gywlxb.2013.05.019 |
[8] | MAO Yong-Jian, LI Yu-Long, CHEN Ying, HUANG Han-Jun, ZHANG Qing-Ping, MIAO Ying-Gang. Numerical Simulation of Cylindrical Shell Loaded by Explosive Rods (Ⅰ): Fluid-Structure Interaction Simulation[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155-162. doi: 10.11858/gywlxb.2012.02.006 |
[9] | TANG Da-Pei, GAO Qing, WU Lan-Ying. Effect of Diamond Films Thickness on Thermal Residual Stress[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 316-321 . doi: 10.11858/gywlxb.2007.03.017 |
[10] | LIN Hua-Ling, HUANG Feng-Lei. Numerical Simulation of Thermodynamics Problem[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 35-44 . doi: 10.11858/gywlxb.2003.01.006 |
[11] | ZHONG Ming, CHENG Shu-Xia, SUN Cheng-Wei, HE Li-Qun. Monte-Carlo Simulation for Thermal Resistance of Contact Surfaces[J]. Chinese Journal of High Pressure Physics, 2002, 16(4): 305-308 . doi: 10.11858/gywlxb.2002.04.012 |
[12] | PENG Jian-Xiang, LI Da-Hong. The Influence of Temperature and Strain Rate on the Flow Stress of Tantalum[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012 |
[13] | LI Xiao-Jie, LI Yong-Chi. A Method of Solving One-Dimension Rigid-Thermo-Visco-Plastic Flow with Cylindrical Symmetry[J]. Chinese Journal of High Pressure Physics, 1996, 10(2): 81-86 . doi: 10.11858/gywlxb.1996.02.001 |
[14] | TANG Wen-Hui, ZHANG Ruo-Qi, ZHAO Guo-Min. Thermal Shock Wave Induced by Impulsive X-Ray[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 107-111 . doi: 10.11858/gywlxb.1995.02.004 |
[15] | ZHOU Nan, QIAO Deng-Jiang. Analytical Solutions of One-Dimensional Thermal Shock Wave[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 124-132 . doi: 10.11858/gywlxb.1995.02.007 |
[16] | Zhou Nan. The Thermal Shock Wave Induced by X-Ray and Electron Beam Radiation and the Compressive Stress Wave[J]. Chinese Journal of High Pressure Physics, 1994, 8(3): 190-199 . doi: 10.11858/gywlxb.1994.03.006 |
[17] | TANG Wen-Hui, ZHANG Ruo-Qi, JING Fu-Qian, HU Jin-Biao. Theoretical Studies of the Thermal Relaxation at the Materials Interface under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1993, 7(4): 247-253 . doi: 10.11858/gywlxb.1993.04.002 |
[18] | ZHANG Ke-Xing, LIU Xu-Fa, LIU Chang-Ling, SUN Cheng-Wei. Effects of Series Sharp Laser Pulse on the Melting and Heat Force of Aluminum Alloy Plates[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 297-306 . doi: 10.11858/gywlxb.1992.04.009 |
[19] | XUE Fu-Zeng, PAN Shou-Fu. Equation of State Calculations for Hot Dense U92[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 71-77 . doi: 10.11858/gywlxb.1991.01.011 |
[20] | SUN Chong-Feng, ZHANG Ruo-Qi. Numerical Simulation of Hot Shock Wave in Porous Aluminum[J]. Chinese Journal of High Pressure Physics, 1991, 5(2): 154-159 . doi: 10.11858/gywlxb.1991.02.012 |