Citation: | NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608 |
[1] |
韩登安, 徐丹, 叶仁传, 等. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析 [J]. 高压物理学报, 2022, 36(4): 044205.
HAN D A, XU D, YE R C, et al. Analysis on damage of double-helicoidal carbon fiber reinforced polymer bionic structure inspired by coelacanth scales under hail load [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044205.
|
[2] |
王计真. 复合材料层合板抗冰雹冲击性能研究 [J]. 兵工学报, 2017, 38(Suppl 1): 89–95.
WANG J Z. Research on anti-hailstone impact behavior of laminated composite panel [J]. Acta Armamentarii, 2017, 38(Suppl 1): 89–95.
|
[3] |
JONES S J. High strain-rate compression tests on ice [J]. The Journal of Physical Chemistry B, 1997, 101(32): 6099–6101. doi: 10.1021/jp963162j
|
[4] |
SHAZLY M, PRAKASH V, LERCH B A. High strain-rate behavior of ice under uniaxial compression [J]. International Journal of Solids and Structures, 2009, 46(6): 1499–1515. doi: 10.1016/j.ijsolstr.2008.11.020
|
[5] |
ALLEN J T, GIAMMANCO I M, KUMJIAN M R, et al. Understanding hail in the earth system [J]. Reviews of Geophysics, 2020, 58(1): e2019RG000665.
|
[6] |
SWIFT J M. Simulated hail ice mechanical properties and failure mechanism at quasi-static strain rates [D]. Seattle: University of Washington, 2013.
|
[7] |
HAYNES F D. Effect of temperature on the strength of snow-ice: CRREL report 78−27 [R]. Hanover: Cold Regions Research and Engineering Laboratory, 1978.
|
[8] |
SCHULSON E M. The structure and mechanical behavior of ice [J]. JOM, 1999, 51(2): 21–27. doi: 10.1007/s11837-999-0206-4
|
[9] |
DEMPSEY J P, DEFRANCO S J, ADAMSON R M, et al. Scale effects on the in-situ tensile strength and fracture of ice part Ⅰ: large grained freshwater ice at Spray Lakes Reservoir, Alberta [J]. International Journal of Fracture, 1999, 95(1): 325–345.
|
[10] |
COLE D M. The microstructure of ice and its influence on mechanical properties [J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1797–1822.
|
[11] |
MELLOR M, COLE D M. Deformation and failure of ice under constant stress or constant strain-rate [J]. Cold Regions Science and Technology, 1982, 5(3): 201–219. doi: 10.1016/0165-232X(82)90015-5
|
[12] |
KUEHN G A, SCHULSON E M, JONES D E, et al. The compressive strength of ice cubes of different sizes [J]. Journal of Offshore Mechanics and Arctic Engineering, 1993, 115(2): 142–148. doi: 10.1115/1.2920104
|
[13] |
SCHULSON E M, DUVAL P. Brittle failure of ice under tension [M]//SCHULSON E M, DUVAL P. Creep and Fracture of Ice. Cambridge: Cambridge University Press, 2009: 212−235.
|
[14] |
SCHULSON E M. Brittle failure of ice [J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1839–1887.
|
[15] |
KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. doi: 10.1007/s10853-006-1376-x
|
[16] |
宋振华. 冰载荷作用下碳纤维复合材料桁条加筋曲面板的冲击动力响应研究 [D]. 广州: 暨南大学, 2014.
SONG Z H. The dynamic response of stringer-stiffened curved composite panels under the hail ice impact [D]. Guangzhou: Jinan University, 2014.
|
[17] |
ASTM. ASTM F320−21 standard test method for hail impact resistance of aerospace transparent enclosures [S]. West Conshohocken: ASTM, 2021.
|
[18] |
张丽芬, 葛鑫, 刘振侠. 人工制备冰雹的力学性能试验研究 [J]. 航空学报, 2021, 42(2): 224255. doi: 10.7527/S1000-6893.2020.24255
ZAHNG L F, GE X, LIU Z X. Experimental study on mechanical properties of artificial hail [J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(2): 224255. doi: 10.7527/S1000-6893.2020.24255
|
[19] |
冯晓伟, 冯高鹏, 方辉. 不同应变率下冰破坏特性的试验研究 [J]. 应用力学学报, 2016, 33(2): 223–228.
FENG X W, FENG G P, FANG H. Experimental investigation on compressive failure behaviour of fresh-water ice at different compressive rates [J]. Chinese Journal of Applied Mechanics, 2016, 33(2): 223–228.
|