Volume 37 Issue 1
Feb 2023
Turn off MathJax
Article Contents
ZHANG Hongsheng, YAO Xianxiang, LYU Xindeng, SONG Hao, HUANG Yanping, FANG Yuqiang, CUI Tian. Pressure-Induced Irreversible Amorphization and Metallization of CsCu2I3[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011101. doi: 10.11858/gywlxb.20230607
Citation: ZHANG Hongsheng, YAO Xianxiang, LYU Xindeng, SONG Hao, HUANG Yanping, FANG Yuqiang, CUI Tian. Pressure-Induced Irreversible Amorphization and Metallization of CsCu2I3[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011101. doi: 10.11858/gywlxb.20230607

Pressure-Induced Irreversible Amorphization and Metallization of CsCu2I3

doi: 10.11858/gywlxb.20230607
  • Received Date: 01 Feb 2023
  • Rev Recd Date: 05 Feb 2023
  • Available Online: 28 Feb 2023
  • Issue Publish Date: 05 Feb 2023
  • Exploring the structures and properties of halide perovskite under pressure have triggered great interest among scientists in recent years. However, there is still little understanding on the potential properties and applications of their amorphous phase under high pressure. In this paper, we utilized diamond anvil cell, combined with in situ high pressure synchrotron radiation X-ray diffraction, Raman spectroscopy and electrical resistance measurement to investigated the amorphization of quasi-one-dimensional halide perovskite CsCu2I3 under high pressure. It was observed that CsCu2I3 started to transform to a reversible low-density amorphous phase Ⅰ above 35.9 GPa. An irreversible high density amorphous phase Ⅱ was realized at higher pressure, which can be maintained to ambient pressure. With the application of pressure up to 136.0 GPa, the initially insulating CsCu2I3 transform to a metallic phase. In addition, the metallic amorphous phase Ⅱ can be preserved to at least 90.0 GPa. These results provide an important scientific basis for further exploring the potential properties and applications of amorphous perovskite.

     

  • loading
  • [1]
    WANG R, HUANG T Y, XUE J J, et al. Prospects for metal halide perovskite-based tandem solar cells [J]. Nature Photonics, 2021, 15(6): 411–425. doi: 10.1038/s41566-021-00809-8
    [2]
    TONG J H, JIANG Q, ZHANG F, et al. Wide-bandgap metal halide perovskites for tandem solar cells [J]. ACS Energy Letters, 2020, 6(1): 232–248. doi: 10.1021/acsenergylett.0c02105
    [3]
    SHAN Q S, SONG J Z, ZOU Y S, et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization [J]. Small, 2017, 13(45): 1701770. doi: 10.1002/smll.201701770
    [4]
    ZHAO Z R, GU F D, RAO H X, et al. Metal halide perovskite materials for solar cells with long-term stability [J]. Advanced Energy Materials, 2019, 9(3): 1802671. doi: 10.1002/aenm.201802671
    [5]
    YUSOFF A R B M, NAZEERUDDIN M K. Low-dimensional perovskites: from synthesis to stability in perovskite solar cells [J]. Advanced Energy Materials, 2018, 8(26): 1702073. doi: 10.1002/aenm.201702073
    [6]
    CAMPBELL M G, POWERS D C, RAYNAUD J, et al. Synthesis and structure of solution-stable one-dimensional palladium wires [J]. Nature Chemistry, 2011, 3(12): 949–953. doi: 10.1038/nchem.1197
    [7]
    LI X L, LV H F, DAI J, et al. Half-metallicity in one-dimensional metal trihydride molecular nanowires [J]. Journal of the American Chemical Society, 2017, 139(18): 6290–6293. doi: 10.1021/jacs.7b01369
    [8]
    LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites [J]. ACS Energy Letters, 2018, 3(1): 54–62. doi: 10.1021/acsenergylett.7b00926
    [9]
    ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids [J]. Materials Science and Engineering R, 2019, 137: 38–65. doi: 10.1016/j.mser.2018.12.001
    [10]
    SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: the next big thing [J]. ACS Energy Letters, 2017, 2(4): 889–896. doi: 10.1021/acsenergylett.6b00705
    [11]
    ZHANG L, WANG K, LIN Y, et al. Pressure effects on the electronic and optical properties in low-dimensional metal halide perovskites [J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4693–4701. doi: 10.1021/acs.jpclett.0c01014
    [12]
    YIN T T, LIU B, YAN J X, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes [J]. Journal of the American Chemical Society, 2019, 141(3): 1235–1241. doi: 10.1021/jacs.8b07765
    [13]
    YUAN Y, LIU X F, MA X D, et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure [J]. Advanced Science, 2019, 6(15): 1900240. doi: 10.1002/advs.201900240
    [14]
    GUO S H, BU K J, LI J W, et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features [J]. Journal of the American Chemical Society, 2021, 143(6): 2545–2551. doi: 10.1021/jacs.0c11730
    [15]
    MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
    [16]
    SHI Y, MA Z W, ZHAO D L, et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites [J]. Journal of the American Chemical Society, 2019, 141(16): 6504–6508. doi: 10.1021/jacs.9b02568
    [17]
    LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771
    [18]
    OU T J, YAN J J, XIAO C H, et al. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites [J]. Nanoscale, 2016, 8(22): 11426–11431. doi: 10.1039/C5NR07842C
    [19]
    WANG L R, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide [J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556–2562. doi: 10.1021/acs.jpclett.6b00999
    [20]
    ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9 [J]. Angewandte Chemie International Edition, 2018, 57(35): 11213–11217. doi: 10.1002/anie.201804310
    [21]
    ZHANG L, LIU C M, LIN Y, et al. Tuning optical and electronic properties in low-toxicity organic-inorganic hybrid (CH3NH3)3Bi2I9 under high pressure [J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1676–1683. doi: 10.1021/acs.jpclett.9b00595
    [22]
    FANG Y Y, SHAO T Y, ZHANG L, et al. Harvesting high-quality white-light emitting and remarkable emission enhancement in one-dimensional halide perovskites upon compression [J]. Journal of the American Chemical Society Au, 2021, 1(4): 459–466. doi: 10.1021/JACSAU.1C00024
    [23]
    ZHOU W X, CHENG Y, CHEN K Q, et al. Thermal conductivity of amorphous materials [J]. Advanced Functional Materials, 2020, 30(8): 1903829. doi: 10.1002/adfm.201903829
    [24]
    HE S Y, LI Y B, LIU L, et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance [J]. Science Advances, 2020, 6(15): eaaz8423. doi: 10.1126/sciadv.aaz8423
    [25]
    ZHAO K P, EIKELAND E, HE D S, et al. Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch [J]. Joule, 2021, 5(5): 1183–1195. doi: 10.1016/j.joule.2021.03.012
    [26]
    MO X M, LI T, HUANG F C, et al. Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection [J]. Nano Energy, 2021, 81: 105570. doi: 10.1016/j.nanoen.2020.105570
    [27]
    LI Z Q, LI Z L, SHI Z F, et al. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure [J]. Advanced Functional Materials, 2020, 30(28): 2002634. doi: 10.1002/adfm.202002634
    [28]
    DU M H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides [J]. ACS Energy Letters, 2020, 5(2): 464–469. doi: 10.1021/acsenergylett.9b02688
    [29]
    XING Z S, ZHOU Z C, ZHONG G H, et al. Barrierless exciton self-trapping and emission mechanism in low-dimensional copper halides [J]. Advanced Functional Materials, 2022, 32(46): 2207638. doi: 10.1002/adfm.202207638
    [30]
    LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units [J]. Journal of the American Chemical Society, 2020, 142(4): 1786–1791. doi: 10.1021/jacs.9b13419
    [31]
    LI R P, WANG R, YUAN Y, et al. Defect origin of emission in CsCu2I3 and pressure-induced anomalous enhancement [J]. The Journal of Physical Chemistry Letters, 2021, 12(1): 317–323. doi: 10.1021/acs.jpclett.0c03432
    [32]
    LI Y, SHI Z F, WANG L T, et al. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors [J]. Materials Horizons, 2020, 7(6): 1613–1622. doi: 10.1039/D0MH00250J
    [33]
    CHERVIN J C, CANNY B, MANCINELLI M. Ruby-spheres as pressure gauge for optically transparent high pressure cells [J]. High Pressure Research, 2001, 21(6): 305–314. doi: 10.1080/08957950108202589
    [34]
    PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [35]
    MEUNIER M, ROBERTSON S. Materials studio 20th anniversary [J]. Molecular Simulation, 2021, 47(7): 537–539. doi: 10.1080/08927022.2021.1892093
    [36]
    JAFFE A, LIN Y, BEAVERS C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties [J]. ACS Central Science, 2016, 2(4): 201–209. doi: 10.1021/acscentsci.6b00055
    [37]
    MATHEU R, KE F, BREIDENBACH A, et al. Charge reservoirs in an expanded halide perovskite analog: enhancing high-pressure conductivity through redox-active molecules [J]. Angewandte Chemie International Edition, 2022, 61(25): e202202911. doi: 10.1002/anie.202202911
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(348) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return