Citation: | JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606 |
[1] |
陈惠苏, 孙伟, PIET S. 水泥基复合材料集料与浆体界面研究综述(Ⅱ): 界面微观结构的形成、劣化机理及其影响因素 [J]. 硅酸盐学报, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013
CHEN H S, SUN W, PIET S. Interfacial transition zone between aggregate and paste in cementitious composites (Ⅱ): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors [J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013
|
[2] |
DIAMOND S, HUANG J D. The ITZ in concrete–a different view based on image analysis and SEM observations [J]. Cement and Concrete Composites, 2001, 23(2/3): 179–188. doi: 10.1016/S0958-9465(00)00065-2
|
[3] |
OLLIVIER J P, MASO J C, BOURDETTE B. Interfacial transition zone in concrete [J]. Advanced Cement Based Materials, 1995, 2(1): 30–38. doi: 10.1016/1065-7355(95)90037-3
|
[4] |
徐晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型 [J]. 硅酸盐学报, 2018, 46(8): 1053–1058. doi: 10.14062/j.issn.0454-5648.2018.08.02
XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling [J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1053–1058. doi: 10.14062/j.issn.0454-5648.2018.08.02
|
[5] |
LEE K M, PARK J H. A numerical model for elastic modulus of concrete considering interfacial transition zone [J]. Cement and Concrete Research, 2008, 38(3): 396–402. doi: 10.1016/j.cemconres.2007.09.019
|
[6] |
王力晓, 陈启东, 刘鑫. 超声动态载荷下混凝土过渡区域的损伤演化 [J]. 高压物理学报, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
WANG L X, CHEN Q D, LIU X. Damage evolution in concrete interfacial transition zone with ultrasonic dynamic load [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
|
[7] |
MALEKI M, RASOOLAN I, KHAJEHDEZFULY A, et al. On the effect of ITZ thickness in meso-scale models of concrete [J]. Construction and Building Materials, 2020, 258: 119639. doi: 10.1016/j.conbuildmat.2020.119639
|
[8] |
NITKA M, TEJCHMAN J. Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates [J]. Engineering Fracture Mechanics, 2020, 231: 107029. doi: 10.1016/j.engfracmech.2020.107029
|
[9] |
杜修力, 金浏. 非均质混凝土材料破坏的三维细观数值模拟 [J]. 工程力学, 2013, 30(2): 82–88. doi: 10.6052/j.issn.1000-4750.2011.07.0445
DU X L, JIN L. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete [J]. Engineering Mechanics, 2013, 30(2): 82–88. doi: 10.6052/j.issn.1000-4750.2011.07.0445
|
[10] |
朱万成, 赵启林, 唐春安, 等. 混凝土断裂过程的力学模型与数值模拟 [J]. 力学进展, 2002, 32(4): 579–598. doi: 10.3321/j.issn:1000-0992.2002.04.012
ZHU W C, ZHAO Q L, TANG C A, et al. Mechanical model and numerical simulation of fracture process of concrete [J]. Advances in Mechanics, 2002, 32(4): 579–598. doi: 10.3321/j.issn:1000-0992.2002.04.012
|
[11] |
CHIAIA B, VERVUURT A, VAN MIER J G M. Lattice model evaluation of progressive failure in disordered particle composites [J]. Engineering Fracture Mechanics, 1997, 57(2/3): 301–318. doi: 10.1016/S0013-7944(97)00011-8
|
[12] |
刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂 [J]. 清华大学学报(自然科学版), 1996, 36(1): 84–89. doi: 10.16511/j.cnki.qhdxxb.1996.01.014
LIU G T, WANG Z M. Numerical simulation study of fracture of concrete materials using random aggregate model [J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 84–89. doi: 10.16511/j.cnki.qhdxxb.1996.01.014
|
[13] |
YU Y, ZHENG Y, ZHAO X Y. Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension using discrete element method [J]. Construction and Building Materials, 2021, 268: 121116. doi: 10.1016/j.conbuildmat.2020.121116
|
[14] |
刘建南, 张昌锁. 过渡区界面对混凝土劈裂性能影响的试验与数值模拟 [J]. 科学技术与工程, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044
LIU J N, ZHANG C S. Experiment and numerical simulation on the influence of interfacial transition zone on concrete splitting performance [J]. Science Technology and Engineering, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044
|
[15] |
施惠生, 居正慧, 郭晓潞, 等. ITZ形成机制及其对混凝土力学性能与传输性能的影响 [J]. 建材技术与应用, 2014(6): 11–18. doi: 10.3969/j.issn.1009-9441.2014.06.006
SHI H S, JU Z H, GUO X L, et al. ITZ formation mechanism and its influence on mechanical and transportation performance of concrete [J]. Research and Application of Building Materials, 2014(6): 11–18. doi: 10.3969/j.issn.1009-9441.2014.06.006
|
[16] |
LYU K, GARBOCZI E J, SHE W, et al. The effect of rough vs. smooth aggregate surfaces on the characteristics of the interfacial transition zone [J]. Cement and Concrete Composites, 2019, 99: 49–61. doi: 10.1016/j.cemconcomp.2019.03.001
|
[17] |
HE J T, LEI D, DI LUZIO G, et al. Mechanical properties measurement and micro-damage characterization of ITZ in concrete by SEM-DIC method [J]. Optics and Lasers in Engineering, 2022, 155: 107064. doi: 10.1016/j.optlaseng.2022.107064
|
[18] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
|
[19] |
REN H L, SONG S Z, NING J G. Damage evolution of concrete under tensile load using discrete element modeling [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103622. doi: 10.1016/j.tafmec.2022.103622
|
[20] |
过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究 [J]. 建筑结构学报, 1982, 3(1): 1–12. doi: 10.14006/j.jz.jgxb.1982.01.001
GUO Z H, ZHANG X Q, ZHANG D C, et al. Experimental investigation of the complete stress-strain curve of concrete [J]. Journal of Building Structures, 1982, 3(1): 1–12. doi: 10.14006/j.jz.jgxb.1982.01.001
|
[21] |
VARGAS P, RESTREPO-BAENA O, TOBÓN J I. Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes [J]. Construction and Building Materials, 2017, 137: 381–389. doi: 10.1016/j.conbuildmat.2017.01.101
|