Citation: | BU Lehu, WANG Pengfei, WU Yangfan, WANG Deya, XU Songlin. Research on Dynamic Mechanical Properties of Two-Phase Composites Based on Convolutional Neural Network[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601 |
[1] |
ZHAO T, YU Y Y, ZHANG Y Y, et al. Lightweight and dual-functional composites with stiff-soft microstructure for energy absorption and thermal insulation [J]. Composites Communications, 2021, 26: 100778. doi: 10.1016/j.coco.2021.100778
|
[2] |
SARVESTANI H Y, VAN EGMOND D A, ESMAIL I, et al. Bioinspired stochastic design: tough and stiff ceramic systems [J]. Advanced Functional Materials, 2022, 32(6): 2108492. doi: 10.1002/adfm.202108492
|
[3] |
WANG J, HU D Y, ZHANG Z Q, et al. Anti-impact performance of bionic tortoiseshell-like composites [J]. Composite Structures, 2023, 303: 116315. doi: 10.1016/j.compstruct.2022.116315
|
[4] |
PILANIA G, WANG C C, JIANG X, et al. Accelerating materials property predictions using machine learning [J]. Scientific Reports, 2013, 3(1): 2810.
|
[5] |
YANG K K, WU Z, ARNOLD F H. Machine-learning-guided directed evolution for protein engineering [J]. Nature Methods, 2019, 16(8): 687–694. doi: 10.1038/s41592-019-0496-6
|
[6] |
LIU X, ATHANASIOU C E, PADTURE N P, et al. A machine learning approach to fracture mechanics problems [J]. Acta Materialia, 2020, 190: 105–112. doi: 10.1016/j.actamat.2020.03.016
|
[7] |
MAZHNIK E, OGANOV A R. Application of machine learning methods for predicting new superhard materials [J]. Journal of Applied Physics, 2020, 128(7): 075102. doi: 10.1063/5.0012055
|
[8] |
WEN C, ZHANG Y, WANG C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Materialia, 2019, 170: 109–117. doi: 10.1016/j.actamat.2019.03.010
|
[9] |
BESSA M A, GLOWACKI P. Bayesian machine learning in metamaterial design: fragile becomes supercompressible [J]. Advanced Materials, 2019, 31(48): 1904845. doi: 10.1002/adma.201904845
|
[10] |
MAO Y W, HE Q, ZHAO X H. Designing complex architectured materials with generative adversarial networks [J]. Science Advances, 2020, 6(17): 4169. doi: 10.1126/sciadv.aaz4169
|
[11] |
REN F, WARD L, WILLIAMS T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Science Advances, 2018, 4(4): 1566. doi: 10.1126/sciadv.aaq1566
|
[12] |
CHAN H, CHERUKARA M, LOEFFLER T D, et al. Machine learning enabled autonomous microstructural characterization in 3D samples [J]. NPJ Computational Materials, 2020, 6(1): 1. doi: 10.1038/s41524-019-0267-z
|
[13] |
BESSA M A, BOSTANABAD R, LIU Z, et al. A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633–667. doi: 10.1016/j.cma.2017.03.037
|
[14] |
ANKENMAN B, NELSON B, STAUM J. Stochastic kriging for simulation metamodeling [J]. Operations Research, 2009, 58(2): 371−382.
|
[15] |
MOZAFFAR M, BOSTANABAD R, CHEN W, et al. Deep learning predicts path-dependent plasticity [J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26414–26420. doi: 10.1073/pnas.1911815116
|
[16] |
LIU Z L, WU C T. Exploring the 3D architectures of deep material network in data-driven multiscale mechanics [J]. Journal of the Mechanics and Physics of Solids, 2019, 127: 20–46. doi: 10.1016/j.jmps.2019.03.004
|
[17] |
GU G X, CHEN C T, BUEHLER M J. De novo composite design based on machine learning algorithm [J]. Extreme Mechanics Letters, 2018, 18: 19–28. doi: 10.1016/j.eml.2017.10.001
|
[18] |
GU G X, CHEN C T, RICHMOND D J, et al. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment [J]. Materials Horizons, 2018, 5(5): 939–945. doi: 10.1039/C8MH00653A
|
[19] |
YU C H, QIN Z, BUEHLER M J. Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance [J]. Nano Futures, 2019, 3(3): 035001. doi: 10.1088/2399-1984/ab36f0
|
[20] |
YANG C, KIM Y, RYU S, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks [J]. Materials & Design, 2020, 189: 108509. doi: 10.1016/j.matdes.2020.108509
|
[21] |
WANG P F, JIANG H B, XU S L, et al. Dynamic plastic instability of ring-shaped aluminum alloy with different interface behaviors [J]. International Journal of Impact Engineering, 2021, 155: 103898. doi: 10.1016/j.ijimpeng.2021.103898
|
[22] |
WANG P F, JIANG H B, LIU M, et al. Toughening mechanisms for the dynamic perforation behavior of laminar aluminum alloy with lubricated frictional interfaces [J]. Materials & Design, 2022, 224: 111268.
|
[23] |
CHEN X, SHI X Z, ZHOU J, et al. High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar [J]. International Journal of Mining Science and Technology, 2021, 31(3): 387–399. doi: 10.1016/j.ijmst.2021.03.008
|
[24] |
WANG L L. Foundations of stress waves [M]. Amsterdam: EIsevier Science Ltd, 2007.
|
[25] |
宋力, 胡时胜. SHPB 数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. doi: 10.3321/j.issn:1001-1455.2005.04.014
SONG L, HU S S. Two wave and three wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. doi: 10.3321/j.issn:1001-1455.2005.04.014
|
[26] |
ZHANG H, ZHANG J. Static and dynamic sealing performance analysis of rubber d-ring based on FEM [J]. Journal of Failure Analysis and Prevention, 2016, 16(1): 165–172. doi: 10.1007/s11668-016-0066-5
|
[27] |
孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
|
[28] |
WANG P F, ZHANG X, ZHANG H, et al. Energy absorption mechanisms of modified double-aluminum layers under low-velocity impact [J]. International Journal of Applied Mechanics, 2015, 7(6): 1550086. doi: 10.1142/S1758825115500866
|
[29] |
WEI Z Q, XU X H. Gradient design of bio-inspired nacre-like composites for improved impact resistance [J]. Composites Part B: Engineering, 2021, 215: 108830. doi: 10.1016/j.compositesb.2021.108830
|
[30] |
GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060
|
[31] |
DU PASQUIER C, CHEN T, TIBBITS S, et al. Design and computational modeling of a 3D printed pneumatic toolkit for soft robotics [J]. Soft Robotics, 2019, 6(5): 657–663. doi: 10.1089/soro.2018.0095
|
[32] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
|
[33] |
LI T T, CHEN Y Y, HU X Y, et al. Exploiting negative Poisson’s ratio to design 3D-printed composites with enhanced mechanical properties [J]. Materials & Design, 2018, 142: 247–258. doi: 10.1016/j.matdes.2018.01.034
|