Volume 37 Issue 3
Jun 2023
Turn off MathJax
Article Contents
BU Lehu, WANG Pengfei, WU Yangfan, WANG Deya, XU Songlin. Research on Dynamic Mechanical Properties of Two-Phase Composites Based on Convolutional Neural Network[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601
Citation: BU Lehu, WANG Pengfei, WU Yangfan, WANG Deya, XU Songlin. Research on Dynamic Mechanical Properties of Two-Phase Composites Based on Convolutional Neural Network[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601

Research on Dynamic Mechanical Properties of Two-Phase Composites Based on Convolutional Neural Network

doi: 10.11858/gywlxb.20230601
  • Received Date: 08 Jan 2023
  • Rev Recd Date: 08 Feb 2023
  • Available Online: 19 Jun 2023
  • Issue Publish Date: 05 Jun 2023
  • Additive manufacturing technology has promoted the development of composite materials and broadened the design space of composite structures. However, the dynamic mechanical properties of composite materials based on additive manufacturing still face problems such as lack of research methods and complex design processes. The split Hopkinson pressure bar (SHPB) experimental technique and ABAQUS finite element simulation were used to study the dynamic mechanical behavior of two-phase composites printed by light-cured 3D, combined with the principal component analysis (PCA) to establish composite structure datasets, and the relationship between the composite structures and the stress-strain curves were learned through a high-performance convolutional neural network (CNN). The research results showed that the finite element model containing interface elements was more suitable for simulating the dynamic mechanical response of composites, and the predictive performance of CNN could be improved by setting hyperparameters. Based on the structure, the trained CNN could quickly predict the dynamic stress-strain curve of the composites. This study provides a reference for the design and application of machine learning in the dynamic performance of composites.

     

  • loading
  • [1]
    ZHAO T, YU Y Y, ZHANG Y Y, et al. Lightweight and dual-functional composites with stiff-soft microstructure for energy absorption and thermal insulation [J]. Composites Communications, 2021, 26: 100778. doi: 10.1016/j.coco.2021.100778
    [2]
    SARVESTANI H Y, VAN EGMOND D A, ESMAIL I, et al. Bioinspired stochastic design: tough and stiff ceramic systems [J]. Advanced Functional Materials, 2022, 32(6): 2108492. doi: 10.1002/adfm.202108492
    [3]
    WANG J, HU D Y, ZHANG Z Q, et al. Anti-impact performance of bionic tortoiseshell-like composites [J]. Composite Structures, 2023, 303: 116315. doi: 10.1016/j.compstruct.2022.116315
    [4]
    PILANIA G, WANG C C, JIANG X, et al. Accelerating materials property predictions using machine learning [J]. Scientific Reports, 2013, 3(1): 2810.
    [5]
    YANG K K, WU Z, ARNOLD F H. Machine-learning-guided directed evolution for protein engineering [J]. Nature Methods, 2019, 16(8): 687–694. doi: 10.1038/s41592-019-0496-6
    [6]
    LIU X, ATHANASIOU C E, PADTURE N P, et al. A machine learning approach to fracture mechanics problems [J]. Acta Materialia, 2020, 190: 105–112. doi: 10.1016/j.actamat.2020.03.016
    [7]
    MAZHNIK E, OGANOV A R. Application of machine learning methods for predicting new superhard materials [J]. Journal of Applied Physics, 2020, 128(7): 075102. doi: 10.1063/5.0012055
    [8]
    WEN C, ZHANG Y, WANG C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Materialia, 2019, 170: 109–117. doi: 10.1016/j.actamat.2019.03.010
    [9]
    BESSA M A, GLOWACKI P. Bayesian machine learning in metamaterial design: fragile becomes supercompressible [J]. Advanced Materials, 2019, 31(48): 1904845. doi: 10.1002/adma.201904845
    [10]
    MAO Y W, HE Q, ZHAO X H. Designing complex architectured materials with generative adversarial networks [J]. Science Advances, 2020, 6(17): 4169. doi: 10.1126/sciadv.aaz4169
    [11]
    REN F, WARD L, WILLIAMS T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Science Advances, 2018, 4(4): 1566. doi: 10.1126/sciadv.aaq1566
    [12]
    CHAN H, CHERUKARA M, LOEFFLER T D, et al. Machine learning enabled autonomous microstructural characterization in 3D samples [J]. NPJ Computational Materials, 2020, 6(1): 1. doi: 10.1038/s41524-019-0267-z
    [13]
    BESSA M A, BOSTANABAD R, LIU Z, et al. A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633–667. doi: 10.1016/j.cma.2017.03.037
    [14]
    ANKENMAN B, NELSON B, STAUM J. Stochastic kriging for simulation metamodeling [J]. Operations Research, 2009, 58(2): 371−382.
    [15]
    MOZAFFAR M, BOSTANABAD R, CHEN W, et al. Deep learning predicts path-dependent plasticity [J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26414–26420. doi: 10.1073/pnas.1911815116
    [16]
    LIU Z L, WU C T. Exploring the 3D architectures of deep material network in data-driven multiscale mechanics [J]. Journal of the Mechanics and Physics of Solids, 2019, 127: 20–46. doi: 10.1016/j.jmps.2019.03.004
    [17]
    GU G X, CHEN C T, BUEHLER M J. De novo composite design based on machine learning algorithm [J]. Extreme Mechanics Letters, 2018, 18: 19–28. doi: 10.1016/j.eml.2017.10.001
    [18]
    GU G X, CHEN C T, RICHMOND D J, et al. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment [J]. Materials Horizons, 2018, 5(5): 939–945. doi: 10.1039/C8MH00653A
    [19]
    YU C H, QIN Z, BUEHLER M J. Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance [J]. Nano Futures, 2019, 3(3): 035001. doi: 10.1088/2399-1984/ab36f0
    [20]
    YANG C, KIM Y, RYU S, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks [J]. Materials & Design, 2020, 189: 108509. doi: 10.1016/j.matdes.2020.108509
    [21]
    WANG P F, JIANG H B, XU S L, et al. Dynamic plastic instability of ring-shaped aluminum alloy with different interface behaviors [J]. International Journal of Impact Engineering, 2021, 155: 103898. doi: 10.1016/j.ijimpeng.2021.103898
    [22]
    WANG P F, JIANG H B, LIU M, et al. Toughening mechanisms for the dynamic perforation behavior of laminar aluminum alloy with lubricated frictional interfaces [J]. Materials & Design, 2022, 224: 111268.
    [23]
    CHEN X, SHI X Z, ZHOU J, et al. High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar [J]. International Journal of Mining Science and Technology, 2021, 31(3): 387–399. doi: 10.1016/j.ijmst.2021.03.008
    [24]
    WANG L L. Foundations of stress waves [M]. Amsterdam: EIsevier Science Ltd, 2007.
    [25]
    宋力, 胡时胜. SHPB 数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. doi: 10.3321/j.issn:1001-1455.2005.04.014

    SONG L, HU S S. Two wave and three wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. doi: 10.3321/j.issn:1001-1455.2005.04.014
    [26]
    ZHANG H, ZHANG J. Static and dynamic sealing performance analysis of rubber d-ring based on FEM [J]. Journal of Failure Analysis and Prevention, 2016, 16(1): 165–172. doi: 10.1007/s11668-016-0066-5
    [27]
    孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827

    MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
    [28]
    WANG P F, ZHANG X, ZHANG H, et al. Energy absorption mechanisms of modified double-aluminum layers under low-velocity impact [J]. International Journal of Applied Mechanics, 2015, 7(6): 1550086. doi: 10.1142/S1758825115500866
    [29]
    WEI Z Q, XU X H. Gradient design of bio-inspired nacre-like composites for improved impact resistance [J]. Composites Part B: Engineering, 2021, 215: 108830. doi: 10.1016/j.compositesb.2021.108830
    [30]
    GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060
    [31]
    DU PASQUIER C, CHEN T, TIBBITS S, et al. Design and computational modeling of a 3D printed pneumatic toolkit for soft robotics [J]. Soft Robotics, 2019, 6(5): 657–663. doi: 10.1089/soro.2018.0095
    [32]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [33]
    LI T T, CHEN Y Y, HU X Y, et al. Exploiting negative Poisson’s ratio to design 3D-printed composites with enhanced mechanical properties [J]. Materials & Design, 2018, 142: 247–258. doi: 10.1016/j.matdes.2018.01.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(347) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return