Citation: | MI Xingyu, ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024204. doi: 10.11858/gywlxb.20220711 |
[1] |
ANTOUN T, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer, 2003.
|
[2] |
KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0
|
[3] |
林茜, 谢普初, 胡建波, 等. 不同晶粒度高纯铜层裂损伤演化的有限元模拟 [J]. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
LIN Q, XIE P C, HU J B, et al. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes [J]. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
|
[4] |
张凤国, 刘军, 何安民, 等. 层裂损伤孔洞增长模型参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
ZHANG F G, LIU J, HE A M, et al. Method of determining parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinica, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
|
[5] |
JIANG Z X, ZHONG Z, XIE P C, et al. Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation [J]. Journal of Applied Physics, 2022, 131(12): 125104. doi: 10.1063/5.0082361
|
[6] |
邓小良, 祝文军, 贺红亮, 等. 沿<111>晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2007, 21(1): 59–65. doi: 10.11858/gywlxb.2007.01.010
DENG X L, ZHU W J, HE H L, et al. Plasticity mechanism associated with nano-void growth under impact loading along <111> direction in copper [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59–65. doi: 10.11858/gywlxb.2007.01.010
|
[7] |
SUN X Y, XU G K, LI X Y, et al. Mechanical properties and scaling laws of nanoporous gold [J]. Journal of Applied Physics, 2013, 113(2): 023505. doi: 10.1063/1.4774246
|
[8] |
RUESTES C J, BRINGA E M, STUKOWSKI A, et al. Plastic deformation of a porous bcc metal containing nanometer sized voids [J]. Computational Materials Science, 2014, 88: 92–102. doi: 10.1016/j.commatsci.2014.02.047
|
[9] |
RUESTES C J, BRINGA E M, STUKOWSKI A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scripta Materialia, 2013, 68(10): 817–820. doi: 10.1016/j.scriptamat.2013.01.035
|
[10] |
RODRIGUEZ-NIEVA J F, RUESTES C J, TANG Y, et al. Atomistic simulation of the mechanical properties of nanoporous gold [J]. Acta Materialia, 2014, 80: 67–76. doi: 10.1016/j.actamat.2014.07.051
|
[11] |
TANG T, KIM S, HORSTEMEYER M F. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium [J]. Acta Materialia, 2010, 58(14): 4742–4759. doi: 10.1016/j.actamat.2010.05.011
|
[12] |
ZHANG Y Q, JIANG S Y, ZHU X M, et al. Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading [J]. Journal of Physics and Chemistry of Solids, 2016, 98: 220–232. doi: 10.1016/j.jpcs.2016.07.018
|
[13] |
XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
|
[14] |
XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
|
[15] |
SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
|
[16] |
WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. doi: 10.1063/1.5081920
|
[17] |
陈伟. 晶粒尺寸对高纯铝动态力学行为与层裂特性的影响 [D]. 宁波: 宁波大学, 2020.
CHEN W. Effect of grain size on dynamic fracture behavior and spallation characteristics of high-purity aluminum [D]. Ningbo: Ningbo University, 2020.
|
[18] |
HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413. doi: 10.1016/0022-5096(72)90017-8
|
[19] |
李宏伟, 杨合, 孙志超. 率相关晶体塑性在有限元应用中的关键技术 [J]. 塑性工程学报, 2008, 15(1): 7–13.
LI H W, YANG H, SUN Z C. Key problems for rate-dependent crystal plasticity applied in finite element simulation [J]. Journal of Plasticity Engineering, 2008, 15(1): 7–13.
|
[20] |
刘周攀. FCC金属滑移变形和损伤劣化的晶体塑性有限元分析 [D]. 南宁: 广西大学, 2019.
LIU Z P. The analysis on slip deformation and damage behavior of FCC metals based on crystal plasticity finite element model [D]. Nanning: Guangxi University, 2019.
|
[21] |
王琦, 黄庆学, 马立东. 纯铝弯曲的单晶体塑性有限元模拟 [J]. 太原科技大学学报, 2014, 35(2): 119–122. doi: 10.3969/j.issn.1673-2057.2014.02.009
WANG Q, HUANG Q X, MA L D. Aluminum bending of crystal plasticity finite element simmulation [J]. Journal of Taiyuan University of Science and Technology, 2014, 35(2): 119–122. doi: 10.3969/j.issn.1673-2057.2014.02.009
|