Volume 37 Issue 3
Jun 2023
Turn off MathJax
Article Contents
LIU Haoshan, ZHANG Zhiyu, HUANG Yonghui, CHEN Chengzhi, MENG Jiale. Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701
Citation: LIU Haoshan, ZHANG Zhiyu, HUANG Yonghui, CHEN Chengzhi, MENG Jiale. Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701

Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure

doi: 10.11858/gywlxb.20220701
  • Received Date: 05 Dec 2022
  • Rev Recd Date: 29 Dec 2022
  • Available Online: 08 Apr 2023
  • Issue Publish Date: 05 Jun 2023
  • To explore the relationship between energy release and failure mode of pegmatite gabbro under confining pressure, the dynamic mechanical properties under different confining pressures and different impact velocities were studied using split Hopkinson pressure bar and LS-DYNA simulation software, and the energy release characteristics and the failure laws under different confining pressures and strain rates were analyzed. The results show that there is no obvious plastic deformation stage under high confining pressure, and the confining pressure restrains the dynamic compressive strength under high strain rate, and the growth trend of the dynamic compressive strength slows down when the impact pressure is greater than 0.4 MPa in the specimen. The strain rate and the confining pressure have great significance for the energy and the failure mode of the specimen. With the increment of the confining pressure, the proportion of the reflected energy of the specimen gradually increases, while the proportion of the transmitted energy decreases. The energy consumption density increases with the increment of the strain rate, and there is an inflection point at the strain rate of 95 s–1 (corresponding to 0.4 MPa of impact pressure). The energy consumption density under high confining pressure is greater than that under low confining pressure. The specimen under confining pressure usually has a certain angle on the failure section. LS-DYNA simulations showed the dynamic failure process of the specimen under confining pressure from microscopic point of view. The specimen is mostly shear failure under medium and low confining pressures, while under high confining pressure, the specimen has multiple shear cracks developed and penetrated, showing a composite failure mode.

     

  • loading
  • [1]
    李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望 [J]. 煤炭学报, 2021, 46(3): 846–866. doi: 10.13225/j.cnki.jccs.YT21.0176

    LI X B, GONG F Q. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing [J]. Journal of China Coal Society, 2021, 46(3): 846–866. doi: 10.13225/j.cnki.jccs.YT21.0176
    [2]
    焦振华, 穆朝民, 王磊, 等. 被动围压下煤冲击压缩动态力学特性试验研究 [J]. 振动与冲击, 2021, 40(21): 185–193. doi: 10.13465/j.cnki.jvs.2021.21.025

    JIAO Z H, MU C M, WANG L, et al. Tests for dynamic mechanical properties of coal impact compression under passive confining pressure [J]. Journal of Vibration and Shock, 2021, 40(21): 185–193. doi: 10.13465/j.cnki.jvs.2021.21.025
    [3]
    王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. doi: 10.16285/j.rsm.2021.0095

    WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. doi: 10.16285/j.rsm.2021.0095
    [4]
    LI L, KOU X Y, ZHANG G, et al. Experimental study on dynamic compressive behaviors of sand under passive confining pressure [J]. Materials, 2022, 15(13): 4690. doi: 10.3390/ma15134690
    [5]
    ZHENG D, SONG W D, CAO S, et al. Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects [J]. Construction and Building Materials, 2022, 320: 126321. doi: 10.1016/j.conbuildmat.2022.126321
    [6]
    刘军忠, 许金余, 赵德辉, 等. 主动围压下地下工程岩石的冲击压缩特性试验研究 [J]. 岩石力学与工程学报, 2011, 30(Suppl 2): 4104–4109.

    LIU J Z, XU J Y, ZHAO D H, et al. Experimental study of shock compression properties of underground engineering rock under active confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl 2): 4104–4109.
    [7]
    王泽东, 许金余, 吕晓聪, 等. 围压作用下岩石冲击破坏与变形特性试验研究 [J]. 地下空间与工程学报, 2011, 7(2): 311–316, 334. doi: 10.3969/j.issn.1673-0836.2011.02.018

    WANG Z D, XU J Y, LYU X C, et al. Research on characteristic of impact damage and distortion of rock under confining pressure [J]. Chinese Journal of Underground Space and Engineering, 2011, 7(2): 311–316, 334. doi: 10.3969/j.issn.1673-0836.2011.02.018
    [8]
    李鸿儒, 王志亮, 郝士云. 主动围压下花岗岩动态力学特性与本构模型研究 [J]. 水文地质工程地质, 2018, 45(3): 49–55. doi: 10.16030/j.cnki.issn.1000-3665.2018.03.06

    LI H R, WANG Z L, HAO S Y. A study of the dynamic properties and constitutive model of granite under active confining pressures [J]. Hydrogeology & Engineering Geology, 2018, 45(3): 49–55. doi: 10.16030/j.cnki.issn.1000-3665.2018.03.06
    [9]
    GAO H, ZHAI Y. Numerical investigation of the concrete-rock combined body influence of inclined interface on dynamic characteristics and failure behaviors [J]. Arabian Journal of Geosciences, 2022, 15(5): 435. doi: 10.1007/S12517-022-09749-1
    [10]
    马泗洲, 刘科伟, 郭腾飞, 等. 煤岩组合体巴西劈裂动态力学特征数值分析 [J]. 高压物理学报, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589

    MA S Z, LIU K W, GUO T F, et al. Numerical analysis of dynamic mechanical characteristics of Brazilian splitting of coal-rock combination bodies [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589
    [11]
    李祥龙, 李强, 王建国, 等. 胶结充填体冲击破坏及损伤演化数值模拟研究 [J]. 北京理工大学学报, 2022, 42(7): 733–740. doi: 10.15918/j.tbit1001-0645.2021.189

    LI X L, LI Q, WANG J G, et al. Numerical simulation research on impact failure and damage evolution of cemented backfill [J]. Transactions of Beijing Institute of Technology, 2022, 42(7): 733–740. doi: 10.15918/j.tbit1001-0645.2021.189
    [12]
    程树范, 高睿, 曾亚武, 等. 冲击作用下煤岩动态破坏机理的FDEM模拟研究 [J]. 振动与冲击, 2022, 41(19): 136–143. doi: 10.13465/j.cnki.jvs.2022.19.018

    CHENG S F, GAO R, ZENG Y W, et al. FDEM simulation of dynamic failure mechanism of coal rock under impact [J]. Journal of Vibration and Shock, 2022, 41(19): 136–143. doi: 10.13465/j.cnki.jvs.2022.19.018
    [13]
    YANG L, XU W B, YILMAZ E, et al. A combined experimental and numerical study on the triaxial and dynamic compression behavior of cemented tailings backfill [J]. Engineering Structures, 2020, 219: 110957. doi: 10.1016/j.engstruct.2020.110957
    [14]
    袁伟, 金解放, 梁晨, 等. 混凝土主动围压SHPB试验波形数值分析 [J]. 长江科学院院报, 2018, 35(7): 141–146. doi: 10.11988/ckyyb.20170142

    YUAN W, JIN J F, LIANG C, et al. Numerical analysis on waveforms in split Hopkinson pressure bar tests of concrete under active confining pressures [J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(7): 141–146. doi: 10.11988/ckyyb.20170142
    [15]
    桑登峰, 廖强, 林宇轩, 等. 围压对珊瑚岩动态力学行为影响 [J]. 北京理工大学学报, 2022, 42(6): 588–595. doi: 10.15918/j.tbit1001-0645.2021.295

    SANG D F, LIAO Q, LIN Y X, et al. Study on dynamic behavior of coral-reef limestone under impact loading with confining pressure [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 588–595. doi: 10.15918/j.tbit1001-0645.2021.295
    [16]
    方士正, 杨仁树, 李炜煜, 等. 非静水压条件下深部岩石能量耗散规律及破坏特征试验研究 [J/OL]. 煤炭科学技术, 2022: 1−13 [2022−11−30]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13199/j.cnki.cst.2022-1504. DOI: 10.13199/j.cnki.cst.2022-1504.

    FANG S Z, YANG R S, LI W Y, et al. Research on energy dissipation and dynamic failure characteristics of rock under non-hydrostatic pressure condition [J/OL]. Coal Science and Technology, 2022: 1−13 [2022−11−30]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13199/j.cnki.cst.2022−1504. DOI: 10.13199/j.cnki.cst.2022-1504.
    [17]
    凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定 [J]. 煤炭学报, 2018, 43(8): 2211–2216. doi: 10.13225/j.cnki.jccs.2017.1305

    LING T L, WU S F, LIU D S, et al. Determination of Holmquist-Johnson-Cook model parameters for sandstone [J]. Journal of China Coal Society, 2018, 43(8): 2211–2216. doi: 10.13225/j.cnki.jccs.2017.1305
    [18]
    张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证 [J]. 振动与冲击, 2019, 38(12): 25–31. doi: 10.13465/j.cnki.jvs.2019.12.004

    ZHANG S R, SONG R, WANG C, et al. Modification of a dynamic constitutive model–HJC model for roller-compacted concrete and numerical verification [J]. Journal of Vibration and Shock, 2019, 38(12): 25–31. doi: 10.13465/j.cnki.jvs.2019.12.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views(338) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return