Volume 37 Issue 3
Jun 2023
Turn off MathJax
Article Contents
DANG Yaqian, WU Yamin, WANG Tuanjie, CUI Xiuli, AN Dingqian. Energy and Damage Evolution Characteristics of Rock Materials under Different Water Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034105. doi: 10.11858/gywlxb.20220699
Citation: DANG Yaqian, WU Yamin, WANG Tuanjie, CUI Xiuli, AN Dingqian. Energy and Damage Evolution Characteristics of Rock Materials under Different Water Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034105. doi: 10.11858/gywlxb.20220699

Energy and Damage Evolution Characteristics of Rock Materials under Different Water Contents

doi: 10.11858/gywlxb.20220699
  • Received Date: 29 Nov 2022
  • Rev Recd Date: 23 Jan 2023
  • Available Online: 27 Mar 2023
  • Issue Publish Date: 05 Jun 2023
  • To study the effect of water content on mechanical properties and energy damage of hard rock materials, the uniaxial compression tests were carried out on sandstone samples under different water contents. The test results show that with the increase of water content, the peak stress, brittleness index and elastic modulus of sandstone samples decrease, and the peak strain of sandstone increases. In the dry state, there is no obvious plastic deformation before failure, showing a significant brittle failure, while in the saturated state, there is a significant plastic deformation in the pre-peak stage, and a yield plateau before failure. The larger the water content of sandstone samples is, the stronger the energy absorption capacity is, the smaller the energy absorption rate is, but the more significant the energy dissipation phenomenon is. The smaller the water content of sandstone samples is, the larger the damage variable is at the time of failure, and the sandstone samples have a strong impact tendency at the time of failure in the dry state. The conclusions provide a theoretical reference for the stability control of surrounding rock in deep underground engineering.

     

  • loading
  • [1]
    邬爱清. 长江科学院水工岩石力学与工程应用研究进展 [J]. 长江科学院院报, 2021, 38(10): 104–111. doi: 10.11988/ckyyb.20210677

    WU A Q. Developments of rock mechanics in hydraulic engineering and their applications by Yangtze River scientific research institute [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 104–111. doi: 10.11988/ckyyb.20210677
    [2]
    CHEN F J, LI H X, ZHU Z Q. Energy dissipation analysis on unloading confining pressure failure process of rock material [J]. Applied Mechanics and Materials, 2012, 256: 398–401. doi: 10.4028/WWW.SCIENTIFIC.NET/AMM.256-259.398
    [3]
    柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究 [J]. 岩石力学与工程学报, 2020, 39(2): 311–326. doi: 10.13722/j.cnki.jrme.2019.0654

    LIU W L, YAN E C, DAI H, et al. Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 311–326. doi: 10.13722/j.cnki.jrme.2019.0654
    [4]
    秦虎, 黄滚, 王维忠. 不同含水率煤岩受压变形破坏全过程声发射特征试验研究 [J]. 岩石力学与工程学报, 2012, 31(6): 1115–1120. doi: 10.3969/j.issn.1000-6915.2012.06.004

    QIN H, HUANG G, WANG W Z. Experimental study of acoustic emission characteristics of coal samples with different moisture contents in process of compression deformation and failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1115–1120. doi: 10.3969/j.issn.1000-6915.2012.06.004
    [5]
    TATONE B S A, ABDELAZIZ A, GRASSELLI G. Novel mechanical classification method of rock based on the uniaxial compressive strength and Brazilian disc strength [J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2503–2507. doi: 10.1007/s00603-021-02759-7
    [6]
    SHEN W B, YU W J, PAN B, et al. Rock mechanical failure characteristics and energy evolution analysis of coal-rock combination with different dip angles [J]. Arabian Journal of Geosciences, 2022, 15(1): 93. doi: 10.1007/S12517-021-09268-5
    [7]
    PERERA M S A, RANJITH P G, PETER M. Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: carbon dioxide, water and nitrogen saturations [J]. Energy, 2011, 36(12): 6941–6947. doi: 10.1016/j.energy.2011.09.026
    [8]
    PAN Z J, CONNELL L D, CAMILLERI M, et al. Effects of matrix moisture on gas diffusion and flow in coal [J]. Fuel, 2010, 89(11): 3207–3217. doi: 10.1016/j.fuel.2010.05.038
    [9]
    郑文红, 施天威, 潘一山, 等. 含水率对岩石电荷感应信号影响规律研究 [J]. 岩土力学, 2022, 43(3): 659–668. doi: 10.16285/j.rsm.2021.1335

    ZHENG W H, SHI T W, PAN Y S, et al. Effects of water content on the charge induced signal of rock [J]. Rock and Soil Mechanics, 2022, 43(3): 659–668. doi: 10.16285/j.rsm.2021.1335
    [10]
    胡昕, 洪宝宁, 孟云梅. 考虑含水率影响的红砂岩损伤统计模型 [J]. 中国矿业大学学报, 2007, 36(5): 609–613. doi: 10.3321/j.issn:1000-1964.2007.05.009

    HU X, HONG B N, MENG Y M. Statistical damage model of red sandstone with effect of water ratio considered [J]. Journal of China University of Mining & Technology, 2007, 36(5): 609–613. doi: 10.3321/j.issn:1000-1964.2007.05.009
    [11]
    李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究 [J]. 岩土力学, 2015, 36(Suppl 2): 229–236. doi: 10.16285/j.rsm.2015.S2.030

    LI T B, CHEN Z Q, CHEN G Q, et al. An experimental study of energy mechanism of sandstone with different moisture contents [J]. Rock and Soil Mechanics, 2015, 36(Suppl 2): 229–236. doi: 10.16285/j.rsm.2015.S2.030
    [12]
    李泓颖, 刘晓辉, 郑钰, 等. 深埋锦屏大理岩渐进破坏过程中的特征能量分析 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3229–3239. doi: 10.13722/j.cnki.jrme.2022.0075

    LI H Y, LIU X H, ZHENG Y, et al. Analysis of characteristic energy during the progressive failure of deep-buried marble in Jinping [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3229–3239. doi: 10.13722/j.cnki.jrme.2022.0075
    [13]
    纪洪广, 苏晓波, 权道路, 等. 受载岩石能量演化特征的研究进展 [J]. 金属矿山, 2020(4): 1–9. doi: 10.19614/j.cnki.jsks.202004001

    JI H G, SU X B, QUAN D L, et al. Research progress on energy evolution characteristics of loaded rocks [J]. Metal Mine, 2020(4): 1–9. doi: 10.19614/j.cnki.jsks.202004001
    [14]
    谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索 [J]. 岩石力学与工程学报, 2015, 34(11): 2161–2178.

    XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161–2178.
    [15]
    王圣程, 姜慧, 禄利刚, 等. 单轴压缩下不同含水率水泥混凝土的能量演化特征 [J]. 混凝土与水泥制品, 2018(7): 24–27.

    WANG S C, JIANG H, LU L G, et al. Energy evolution characteristic on cement concrete with different water content under unaxial compression [J]. China Concrete and Cement Products, 2018(7): 24–27.
    [16]
    杨永杰, 马德鹏. 煤样三轴卸荷破坏的能量演化特征试验分析 [J]. 采矿与安全工程学报, 2018, 35(6): 1208–1216.

    YANG Y J, MA D P. Experimental research on energy evolution properties of coal sample failure under triaxial unloading testing [J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1208–1216.
    [17]
    孟召平, 潘结南, 刘亮亮, 等. 含水量对沉积岩力学性质及其冲击倾向性的影响 [J]. 岩石力学与工程学报, 2009, 28(Suppl 1): 2637–2643. doi: 10.3321/j.issn:1000-6915.2009.z1.007

    MENG Z P, PAN J N, LIU L L, et al. Influence of moisture contents on mechanical properties of sedimentary rock and its bursting potential [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl 1): 2637–2643. doi: 10.3321/j.issn:1000-6915.2009.z1.007
    [18]
    茅献彪, 张连英, 刘瑞雪. 高温状态下泥岩单轴蠕变特性及损伤本构关系研究 [J]. 岩土工程学报, 2013, 35(Suppl 2): 30–37.

    MAO X B, ZHANG L Y, LIU R X. Creep properties and damage constitutive relation of mudstone under uniaxial compression at high temperature [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 30–37.
    [19]
    赵志刚, 高成章, 贾志闯, 等. 岩石破碎过程中能量演化的模拟分析 [J]. 矿业研究与开发, 2016, 36(11): 50–54. doi: 10.13827/j.cnki.kyyk.2016.11.011

    ZHAO Z G, GAO C Z, JIA Z C, et al. Rock crushing process simulation evolutionary mechanisms based on energy analysis [J]. Mining Research and Development, 2016, 36(11): 50–54. doi: 10.13827/j.cnki.kyyk.2016.11.011
    [20]
    于少群, 李理. 低渗储层岩石的力学性质及其控制因素——以牛庄洼陷牛35块沙三中为例 [J]. 地质科学, 2021, 56(3): 845–853. doi: 10.12017/dzkx.2021.043

    YU S Q, LI L. Mechanical properties of low permeability reservoir rocks and their controlling factors: take the Third Member of Shahejie Formation of Niu-35 fault block in Niu Zhuang Sag as an example [J]. Chinese Journal of Geology, 2021, 56(3): 845–853. doi: 10.12017/dzkx.2021.043
    [21]
    周学慧, 杜治利, 丁文龙, 等. 基于岩石破裂特征及能量演化的致密砂岩脆性指数优选 [J]. 中国矿业, 2020, 29(Suppl 2): 371–377.

    ZHOU X H, DU Z L, DING W L, et al. Brittleness index optimization of tight sandstone based on the characteristics of rock failure and energy evolution [J]. China Mining Magazine, 2020, 29(Suppl 2): 371–377.
    [22]
    郭建卿, 苏承东. 不同煤试样冲击倾向性试验结果分析 [J]. 煤炭学报, 2009, 34(7): 897–902. doi: 10.3321/j.issn:0253-9993.2009.07.007

    GUO J Q, SU C D. Analysis on experimental results of rock burst tendency of different coal samples [J]. Journal of China Coal Society, 2009, 34(7): 897–902. doi: 10.3321/j.issn:0253-9993.2009.07.007
    [23]
    宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据 [J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232

    GONG F Q, YAN J Y, LI X B. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(329) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return