Citation: | XU Liang, XIANG Shikai, HU Jianbo, WU Qiang. Structural Evolution in Molten Tin and Bismuth under Extreme Conditions[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 010101. doi: 10.11858/gywlxb.20220696 |
[1] |
DEBENEDETTI P G. Metastable liquids: concepts and principles [M]. Princeton: Princeton University Press, 1996.
|
[2] |
MISHIMA O, STANLEY H E. The relationship between liquid, supercooled and glassy water [J]. Nature, 1998, 396(6709): 329–335. doi: 10.1038/24540
|
[3] |
SASTRY S, ANGELL C A. Liquid-liquid phase transition in supercooled silicon [J]. Nature Materials, 2003, 2(11): 739–743. doi: 10.1038/nmat994
|
[4] |
SAIKA-VOIVOD I, SCIORTINO F, POOLE P H. Computer simulations of liquid silica: equation of state and liquid-liquid phase transition [J]. Physical Review E, 2000, 63(1): 011202. doi: 10.1103/PhysRevE.63.011202
|
[5] |
TONKOV E Y, PONYATOVSKY E G. Phase transformations of elements under high pressure [M]. Amsterdam: CRC Press, 2005.
|
[6] |
李任重, 武振伟, 徐莉梅. 液体-液体相变与反常特性 [J]. 物理学报, 2017, 66(17): 176410. doi: 10.7498/APS.66.176410
LI R Z, WU Z W, XU L M. Liquid-liquid phase transition and anomalous propertie [J]. Acta Physica Sinica, 2017, 66(17): 176410. doi: 10.7498/APS.66.176410
|
[7] |
TANAKA H. Liquid-liquid transition and polyamorphism [J]. The Journal of Chemical Physics, 2020, 153(13): 130901. doi: 10.1063/5.0021045
|
[8] |
XU L M, KUMAR P, BULDYREV S V, et al. Relation between the widom line and the dynamic crossover in systems with a liquid-liquid phase transition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16558–16562. doi: 10.1073/pnas.0507870102
|
[9] |
LIMMER D T, CHANDLER D. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water [J]. The Journal of Chemical Physics, 2011, 135(13): 134503. doi: 10.1063/1.3643333
|
[10] |
TANAKA H. Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization [J]. The European Physical Journal E, 2012, 35(10): 113. doi: 10.1140/epje/i2012-12113-y
|
[11] |
SMALLENBURG F, SCIORTINO F. Tuning the liquid-liquid transition by modulating the hydrogen-bond angular flexibility in a model for water [J]. Physical Review Letters, 2015, 115(1): 015701. doi: 10.1103/PhysRevLett.115.015701
|
[12] |
ANGELL C A. Supercooled water: two phases? [J]. Nature Materials, 2014, 13(7): 673–675. doi: 10.1038/nmat4022
|
[13] |
MARQUES M S, HERNANDES V F, LOMBA E, et al. Competing interactions near the liquid-liquid phase transition of core-softened water/methanol mixtures [J]. Journal of Molecular Liquids, 2020, 320: 114420. doi: 10.1016/j.molliq.2020.114420
|
[14] |
KIM K H, SPÄH A, PATHAK H, et al. Maxima in the thermodynamic response and correlation functions of deeply supercooled water [J]. Science, 2017, 358(6370): 1589–1593. doi: 10.1126/science.aap8269
|
[15] |
BEYE M, SORGENFREI F, SCHLOTTER W F, et al. The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 16772–16776. doi: 10.1073/pnas.1006499107
|
[16] |
CAUPIN F, HOLTEN V, QIU C, et al. Comment on “Maxima in the thermodynamic response and correlation functions of deeply supercooled water” [J]. Science, 2018, 360(6390): eaat1634. doi: 10.1126/science.aat1634
|
[17] |
ALLEN M P, TILDESLEY D J. Computer simulation of liquids [M]. Oxford: Clarendon Press, 1989.
|
[18] |
DREWITT J W E, TURCI F, HEINEN B J, et al. Structural ordering in liquid gallium under extreme conditions [J]. Physical Review Letters, 2020, 124(14): 145501. doi: 10.1103/PhysRevLett.124.145501
|
[19] |
REICHERT H, KLEIN O, DOSCH H, et al. Observation of five-fold local symmetry in liquid lead [J]. Nature, 2000, 408(6814): 839–841. doi: 10.1038/35048537
|
[20] |
LEE G W, GANGOPADHYAY A K, KELTON K F, et al. Difference in icosahedral short-range order in early and late transition metal liquids [J]. Physical Review Letters, 2004, 93(3): 037802. doi: 10.1103/PhysRevLett.93.037802
|
[21] |
JAKSE N, PASTUREL A. Local order of liquid and supercooled zirconium by ab initio molecular dynamics [J]. Physical Review Letters, 2003, 91(19): 195501. doi: 10.1103/PhysRevLett.91.195501
|
[22] |
边秀房, 王伟民, 李辉, 等. 金属熔体结构 [M]. 上海: 上海交通大学出版社, 2003.
BIAN X F, WANG W M, LI H, et al. Structure in molten metals [M]. Shanghai: Shanghai Jiao Tong University Press, 2003.
|
[23] |
WANG L, WANG Y Q, PENG C X, et al. Medium-range structural order in liquid Ni20Al80 alloy: experimental and molecular dynamics studies [J]. Physics Letters A, 2006, 350(5/6): 405–409. doi: 10.1016/j.physleta.2005.10.041
|
[24] |
ROIK O S, SAMSONNIKOV O V, KAZIMIROV V P, et al. Medium-range order in Al-based liquid binary alloys [J]. Journal of Molecular Liquids, 2010, 151(1): 42–49. doi: 10.1016/j.molliq.2009.11.001
|
[25] |
WASEDA Y. The structure of non-crystalline materials: liquids and amorphous solids [M]. New York: McGraw-Hill International Book Company, 1980.
|
[26] |
BERNAL J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183(4655): 141–147. doi: 10.1038/183141a0
|
[27] |
ZACHARIASEN W H. The atomic arrangement in glass [J]. Journal of the American Chemical Society, 1932, 54(10): 3841–3851. doi: 10.1021/ja01349a006
|
[28] |
IIDA T, GUTHRIE R I L. The thermophysical properties of metallic liquids [M]. Oxford: Oxford University Press, 2015.
|
[29] |
XU L, WANG Z G, CHEN J, et al. Folded network and structural transition in molten tin [J]. Nature Communications, 2022, 13: 126. doi: 10.1038/S41467-021-27742-2
|
[30] |
WU A Q, GUO L J, LIU C S, et al. Internal friction behavior of liquid Bi-Sn alloys [J]. Physica B: Condensed Matter, 2005, 369(1): 51–55. doi: 10.1016/j.physb.2005.08.003
|
[31] |
GREENBERG Y, YAHEL E, GANOR M, et al. High precision measurements of the temperature dependence of the sound velocity in selected liquid metals [J]. Journal of Non-Crystalline Solids, 2008, 354: 4094–4100. doi: 10.1016/j.jnoncrysol.2008.05.038
|
[32] |
GITIS M B, MIKHAILOBV I G. Correlation of the velocity of sound and electrical conductivity in liquid metals [J]. Soviet Physics-Acoustics, 1966, 372: 11.
|
[33] |
HAYASHI M, YAMADA H, NABESHIMA N, et al. Temperature dependence of the velocity of sound in liquid metals of group ⅩⅣ [J]. International Journal of Thermophysics, 2007, 28(1): 83–96. doi: 10.1007/s10765-007-0151-9
|
[34] |
ZU F Q, ZHU Z G, GUO L J, et al. Observation of an anomalous discontinuous liquid-structure change with temperature [J]. Physical Review Letters, 2002, 89(12): 125505. doi: 10.1103/PhysRevLett.89.125505
|
[35] |
BRAZHKIN V V, POPOVA S V, VOLOSHIN R N. High-pressure transformations in simple melts [J]. High Pressure Research, 1997, 15(5): 267–305. doi: 10.1080/08957959708240477
|
[36] |
UMNOV A G, BRAZHKIN V V. Study of liquid and solid tin at high temperatures and high pressures [J]. High Temperatures-High Pressures, 1993, 25(2): 221–231.
|
[37] |
FURUKAWA K, ORTON B R, HAMOR J, et al. The structure of liquid tin [J]. Philosophical Magazine, 1963, 8(85): 141–155. doi: 10.1080/14786436308212495
|
[38] |
ITAMI T, MUNEJIRI S, MASAKI T, et al. Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: a comparison to liquid Pb [J]. Physical Review B, 2003, 67(6): 480–485. doi: 10.1103/PhysRevB.67.064201
|
[39] |
ORTON B R. A double hard sphere model of liquid semi-metals: applications to bismuth and tin [J]. Zeitschrift für Naturforschung A, 1979, 34(12): 1547–1550. doi: 10.1515/zna-1979-1226
|
[40] |
ZOU X W, JIN Z Z, SHANG Y J. Static structure factor of non-simple liquid metals Bi, Ga, Sb, and Sn [J]. Physica Status Solidi B, 1987, 139(2): 365–370. doi: 10.1002/pssb.2221390202
|
[41] |
IKUTA D, KONO Y, SHEN G Y. Pressure and temperature dependence of the structure of liquid Sn up to 5.3 GPa and 1373 K [J]. High Pressure Research, 2016, 36(4): 533–548. doi: 10.1080/08957959.2016.1185520
|
[42] |
MON K K, ASHCROFT N W, CHESTER G V. Core polarization and the structure of simple metals [J]. Physical Review B, 1979, 19(10): 5103–5122. doi: 10.1103/PhysRevB.19.5103
|
[43] |
JANK W, HAFNER J. Structural and electronic properties of the liquid polyvalent elements: the group-Ⅳ elements Si, Ge, Sn, and Pb [J]. Physical Review B, 1990, 41(3): 1497–1515. doi: 10.1103/PhysRevB.41.1497
|
[44] |
HAFNER J, KAHL G. The structure of the elements in the liquid state [J]. Journal of Physics F: Metal Physics, 1984, 14(10): 2259–2278. doi: 10.1088/0305-4608/14/10/006
|
[45] |
SILBERT M, YOUNG W H. Liquid metals with structure factor shoulders [J]. Physics Letters A, 1976, 58(7): 469–470. doi: 10.1016/0375-9601(76)90487-4
|
[46] |
SADR-LAHIJANY M R, SCALA A, BULDYREV S V, et al. Liquid-state anomalies and the stell-hemmer core-softened potential [J]. Physical Review Letters, 1998, 81(22): 4895–4898. doi: 10.1103/PhysRevLett.81.4895
|
[47] |
NARUSHIMA T, HATTORI T, KINOSHITA T, et al. Pressure dependence of the structure of liquid Sn up to 19.4 GPa [J]. Physical Review B, 2007, 76(10): 104204. doi: 10.1103/PhysRevB.76.104204
|
[48] |
CHENG S J, BIAN X F, WANG W M, et al. Effect of copper, aluminum and tin addition on thermal contraction of indium melt clusters [J]. Physica B: Condensed Matter, 2005, 366(1/2/3/4): 67–73. doi: 10.1016/j.physb.2005.05.023
|
[49] |
LOU H B, WANG X D, CAO Q P, et al. Negative expansions of interatomic distances in metallic melts [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10068–10072. doi: 10.1073/pnas.1307967110
|
[50] |
DING J, XU M, GUAN P F, et al. Temperature effects on atomic pair distribution functions of melts [J]. The Journal of Chemical Physics, 2014, 140(6): 064501. doi: 10.1063/1.4864106
|
[51] |
DING J, MA E. Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids [J]. NPJ Computational Materials, 2017, 3: 9. doi: 10.1038/s41524-017-0007-1
|
[52] |
SHENG H W, LUO W K, ALAMGIR F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439(7075): 419–425. doi: 10.1038/nature04421
|
[53] |
KELTON K F, LEE G W, GANGOPADHYAY A K, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier [J]. Physical Review Letters, 2003, 90(19): 195504. doi: 10.1103/PhysRevLett.90.195504
|
[54] |
LORENZ C D, ZIFF R M. Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices [J]. Physical Review E, 1998, 57(1): 230–236. doi: 10.1103/PhysRevE.57.230
|
[55] |
ZU F Q. Temperature-induced liquid-liquid transition in metallic melts: a brief review on the new physical phenomenon [J]. Metals, 2015, 5(1): 395–417. doi: 10.3390/met5010395
|
[56] |
UMNOV A G, BRAZHKIN V V, POPOVA S V, et al. Pressure-temperature diagram of liquid bismuth [J]. Journal of Physics: Condensed Matter, 1992, 4(6): 1427–1431. doi: 10.1088/0953-8984/4/6/007
|
[57] |
SHU Y, YU D L, HU W T, et al. Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3375–3380. doi: 10.1073/pnas.1615874114
|
[58] |
SU C, LIU Y G, WANG Z G, et al. Equation of state of liquid bismuth and its melting curve from ultrasonic investigation at high pressure [J]. Physica B: Condensed Matter, 2017, 524: 154–162. doi: 10.1016/j.physb.2017.08.049
|
[59] |
DI CICCO A. Multiple-edge EXAFS refinement: short-range structure in liquid and crystalline Sn [J]. Physical Review B, 1996, 53(10): 6174–6185. doi: 10.1103/PhysRevB.53.6174
|
[60] |
DI CICCO A, TRAPANANTI A, PRINCIPI E, et al. Polymorphism and metastable phenomena in liquid tin under pressure [J]. Applied Physics Letters, 2006, 89(22): 221912. doi: 10.1063/1.2397568
|
[61] |
FAN X B, XIANG S K, CAI L C. Temperature dependence of bismuth structures under high pressure [J]. Chinese Physics B, 2022, 31(5): 056101. doi: 10.1088/1674-1056/ac398d
|
[62] |
RYGG J R, EGGERT J H, LAZICKI A E, et al. Powder diffraction from solids in the terapascal regime [J]. Review of Scientific Instruments, 2012, 83(11): 113904. doi: 10.1063/1.4766464
|
[63] |
BRIGGS R, GORMAN M G, ZHANG S, et al. Coordination changes in liquid tin under shock compression determined using in situ femtosecond X-ray diffraction [J]. Applied Physics Letters, 2019, 115(26): 264101. doi: 10.1063/1.5127291
|
[64] |
GORMAN M G, COLEMAN A L, BRIGGS R, et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth [J]. Scientific Reports, 2018, 8(1): 16927. doi: 10.1038/s41598-018-35260-3
|
[65] |
YAOITA K, TSUJI K, KATAYAMA Y, et al. The structure of liquid bismuth under pressure [J]. Journal of Non-Crystalline Solids, 1992, 150(1): 25–28. doi: 10.1016/0022-3093(92)90088-2
|
[66] |
LIN C L, SMITH J S, SINOGEIKIN S V, et al. A metastable liquid melted from a crystalline solid under decompression [J]. Nature Communications, 2017, 8: 14260. doi: 10.1038/ncomms14260
|
[67] |
TSUJI K, HATTORI T, MORI T, et al. Pressure dependence of the structure of liquid group 14 elements [J]. Journal of Physics: Condensed Matter, 2004, 16(14): S989–S996. doi: 10.1088/0953-8984/16/14/008
|
[68] |
FUNAMORI N, TSUJI K. Pressure-induced structural change of liquid silicon [J]. Physical Review Letters, 2002, 88(25): 255508. doi: 10.1103/PhysRevLett.88.255508
|
[69] |
KŌGA J, OKUMURA H, NISHIO K, et al. Simulational analysis of the local structure in liquid germanium under pressure [J]. Physical Review B, 2002, 66(6): 064211. doi: 10.1103/PhysRevB.66.064211
|