Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
LEI Ming, ZHANG Maochen, QIN Zihao, YANG Min, ZHANG Wei, LU Shiwei. Dynamic Response of Pipeline Subjected to Cylindrical SH Wave[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024203. doi: 10.11858/gywlxb.20220690
Citation: LEI Ming, ZHANG Maochen, QIN Zihao, YANG Min, ZHANG Wei, LU Shiwei. Dynamic Response of Pipeline Subjected to Cylindrical SH Wave[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024203. doi: 10.11858/gywlxb.20220690

Dynamic Response of Pipeline Subjected to Cylindrical SH Wave

doi: 10.11858/gywlxb.20220690
  • Received Date: 09 Nov 2022
  • Rev Recd Date: 21 Dec 2022
  • Accepted Date: 24 Feb 2023
  • Available Online: 13 Apr 2023
  • Issue Publish Date: 05 Apr 2023
  • In the process of underground space development and construction, the blasting seismic wave induced by drilling and blasting is very important to the safety of underground pipeline. When the explosion is close to the pipe, the curvature of the wave front will have a significant impact on the blasting dynamic response of the pipe. In this paper, the wave function expansion method was used to study the dynamic stress concentration of pipelines under the blasting effect of cylindrical SH wave. The distribution law of the dynamic stress concentration factor (DSCF) of concrete pipe and PVC pipe was discussed. Then the effects of the distance from the wave source to the pipe axis r0, the incident frequency of cylindrical SH waves, and the shear modulus ratio η of the pipe and soil layer on the DSCF of the pipe inner wall were also discussed. The results show that the distribution shape of DSCF of the inner wall of the concrete pipe is more sensitive to the frequency of cylindrical SH wave than that of PVC pipe. η is an important index affecting the concentration of dynamic stress in the pipeline. When the incident wave frequency is constant, the maximum DSCF of the pipeline increases with the increase of η. When η is constant, the maximum DSCF decreases with the increase of incident frequency. The distance from the wave source to the pipe axis influences the failure position of the pipeline due to the curvature of the wave front, but it has little effect on the maximum DSCF value.

     

  • loading
  • [1]
    PAO Y H, MOW C C. Diffraction of elastic waves and dynamic stress concentrations [M]. New York: Crane Russak, 1973.
    [2]
    BARON M L, MATTHEWS A T. Diffraction of a pressure wave by a cylindrical cavity in an elastic medium [J]. Journal of Applied Mechanics, 1961, 28(3): 347–354. doi: 10.1115/1.3641710
    [3]
    YI C P, LU W B, ZHANG P, et al. Effect of imperfect interface on the dynamic response of a circular lined tunnel impacted by plane P-waves [J]. Tunnelling and Underground Space Technology, 2016, 51: 68–74. doi: 10.1016/j.tust.2015.10.011
    [4]
    LEE V W, KARL J. Diffraction of SV waves by underground, circular, cylindrical cavities [J]. Soil Dynamics and Earthquake Engineering, 1992, 11(8): 445–456. doi: 10.1016/0267-7261(92)90008-2
    [5]
    LEE V W, KARL J. On deformation near a circular underground cavity subjected to incident plane P waves [J]. European Journal of Earthquake Engineering, 1993, 7(1): 29–36.
    [6]
    刘殿魁, 袁迎春. 各向异性介质中由SH波引起的圆孔周围的远场位移 [J]. 地震工程与工程振动, 1988, 8(1): 52–62. doi: 10.13197/j.eeev.1988.01.005

    LIU D K, YUAN Y C. Far field displacement around a circular cavity caused by SH wave in an anisotropic medium [J]. Earthquake Engineering and Engineering Vibration, 1988, 8(1): 52–62. doi: 10.13197/j.eeev.1988.01.005
    [7]
    齐辉, 王艳, 刘殿魁. 半无限空间界面附近SH波对圆形衬砌的散射 [J]. 地震工程与工程振动, 2003, 23(3): 41–46. doi: 10.3969/j.issn.1000-1301.2003.03.007

    QI H, WANG Y, LIU D K. Dynamic analysis of shallow-embedded lining structure by incident SH-wave [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 41–46. doi: 10.3969/j.issn.1000-1301.2003.03.007
    [8]
    许华南, 张洋, 黄清云, 等. 出平面波作用下地下复杂衬砌结构的地震动研究 [J]. 地震工程与工程振动, 2019, 39(6): 154–159. doi: 10.13197/j.eeev.2019.06.154.xuhn.022

    XU H N, ZHANG Y, HUANG Q Y, et al. Study on ground motion of underground complex lining structure under out of plane wave [J]. Earthquake Engineering and Engineering Vibration, 2019, 39(6): 154–159. doi: 10.13197/j.eeev.2019.06.154.xuhn.022
    [9]
    梁瑞, 包娟, 周文海, 等. 地铁隧道掘进爆破对既有埋地管道的动力影响 [J]. 爆破, 2021, 38(1): 41–50. doi: 10.3963/j.issn.1001-487X.2021.01.007

    LIANG R, BAO J, ZHOU W H, et al. Dynamic effects of existing buried pipes in metro tunnels under tunnel excavation blasting [J]. Blasting, 2021, 38(1): 41–50. doi: 10.3963/j.issn.1001-487X.2021.01.007
    [10]
    纪冲, 龙源, 唐献述, 等. 爆炸载荷下X70钢管道的局部破坏效应 [J]. 高压物理学报, 2013, 27(4): 567–574. doi: 10.11858/gywlxb.2013.04.016

    JI C, LONG Y, TANG X S, et al. Local damage effects of X70 steel pipe subjected to contact explosion loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 567–574. doi: 10.11858/gywlxb.2013.04.016
    [11]
    周俊, 石文革, 董玉飞, 等. 上土下岩地层中平面SH波的传播特性分析 [J]. 高压物理学报, 2022, 36(6): 062302.

    ZHOU J, SHI W G, DONG Y F, et al. Analysis of propagation characteristics of SH waves in upper soil and lower rock strata [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062302.
    [12]
    曹天阁. 基于精确化平板理论求解弹性波散射与动应力集中问题 [D]. 扬州: 扬州大学, 2016.

    CAO T G. Elastic wave scattering and dynamic stress concentrations based on the refined plate theory [D]. Yangzhou: Yangzhou University, 2016
    [13]
    LU S W, ZHOU C B, ZHANG Z, et al. Dynamic stress concentration of surrounding rock of a circular tunnel subjected to blasting cylindrical P-waves [J]. Geotechnical and Geological Engineering, 2019, 37(4): 2363–2371. doi: 10.1007/s10706-018-00761-5
    [14]
    LU S W, ZHOU C B, ZHEN Z, et al. Particle velocity response of surrounding rock of a circular tunnel subjected to cylindrical P-waves [J]. Tunnelling and Underground Space Technology, 2019, 83(1): 393–400.
    [15]
    王进. SH波作用下正交各向异性弹性半空间凹陷地形浅埋圆柱动应力集中 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    WANG J. Dynamic stress concentration around shallow cylindrical inclusion by SH wave in orthogonal anisotropy elastic half-space with a semi-cylindrical canyon [D]. Harbin: Harbin Engineering University, 2016.
    [16]
    LI J C, MA G W, ZHOU Y X. Analytical study of underground explosion-induced ground motion [J]. Rock Mechanics & Rock Engineering, 2012, 45(6): 1037–1046.
    [17]
    CHAI S B, LI J C, LI H B, et al. Analytical study of cylindrical P-wave propagation across jointed rock masses [J]. Advanced Materials Research, 2014, 988: 502–507. doi: 10.4028/www.scientific.net/AMR.988.502
    [18]
    CHAI S B, LI J C, LI H B, et al. Parametric study on cylindrical P-wave propagation [J]. Applied Mechanics and Materials, 2014, 621: 225–229. doi: 10.4028/www.scientific.net/AMM.621.225
    [19]
    YI C, ZHANG P, JOHANSON D, et al. Dynamic response of a circular lined tunnel with an imperfect interface subjected to cylindrical P-waves [J]. Computers and Geotechnics, 2014, 55: 165–171. doi: 10.1016/j.compgeo.2013.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(173) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return