Citation: | HE Xiang, DONG Haiping, YAN Nan. Parameter Fitting of Flyer Impact Initiation Criteria of JO-9C(Ⅲ) Explosive[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025102. doi: 10.11858/gywlxb.20220680 |
[1] |
WALKER F E, WASLEY R J. Critical energy for shock initiation of heterogeneous explosive [J]. Explosivstoffe, 1969, 17(1): 9–13.
|
[2] |
WALKER F E, WASLEY R J. A General model for the shock initiation of explosives [J]. Propellants, Explosives, Pyrotechnics, 1976, 1(4): 73–80. doi: 10.1002/prep.19760010403
|
[3] |
JAMES H R. Critical energy criterion for the shock Initiation of explosives by projectile impact [J]. Propellants, Explosives, Pyrotechnics, 1988, 13(2): 35–41. doi: 10.1002/prep.19880130202
|
[4] |
JAMES H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8–13. doi: 10.1002/prep.19960210103
|
[5] |
WELLE E J, MOLEK C D, WIXOM R R, et al. Microstructural effects on the ignition behavior of HMX [J]. Journal of Physics: Conference Series, 2014, 500(5): 052049. doi: 10.1088/1742-6596/500/5/052049
|
[6] |
KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1, 3, 5, 7-tetranitro-1, 2, 3, 5-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 115902. doi: 10.1063/1.4962211
|
[7] |
BOWDEN M D, MAISEY M P. Determination of critical energy criteria for hexanitrostilbene using laser-driven flyer plates [C]//Proceedings of SPIE 7070, Optical Technologies for Arming, Safing, Fuzing, and Firing Ⅳ. San Diego: SPIE, 2008: 707004.
|
[8] |
SCHWARZ A C. Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS) [R]. Albuquerque: Sandia National Laboratories, 1981.
|
[9] |
BOWDEN M D. A volumetric approach to shock initiation of hexanitrostilbene and pentaerythritol etranitrate [C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. St. Louis, MO, USA, 2017.
|
[10] |
莫建军, 王桂吉, 吴刚, 等. 炸药TATB/粘结剂的短脉冲冲击起爆阈值测量 [J]. 实验力学, 2010, 25(1): 41–46.
MO J J, WANG G J, WU G, et al. Measurement of the short-duration pulse shock initiation thresholds for TATB explosive/adhesive [J]. Journal of Experimental Mechanics, 2010, 25(1): 41–46.
|
[11] |
同红海, 奥成刚, 韩克华, 等. 超细HNS-Ⅳ炸药的窄脉冲起爆判据研究 [J]. 火工品, 2011(2): 32–36. doi: 10.3969/j.issn.1003-1480.2011.02.009
TONG H H, AO C G, HAN K H, et al. Study on the short pulse initiation criterion of ultrafine HNS-Ⅳ explosive [J]. Initiators & Pyrotechnics, 2011(2): 32–36. doi: 10.3969/j.issn.1003-1480.2011.02.009
|
[12] |
张凡, 张蕊, 解瑞珍, 等. 凝聚态炸药冲击起爆判据的分析与评价 [J]. 北京理工大学学报, 2017, 37(Suppl 2): 21–24.
ZHANG F, ZHANG R, XIE R Z, et al. Analysis and assessment on shock initiation criterion for condensed explosives [J]. Transactions of Beijing Institute of Technology, 2017, 37(Suppl 2): 21–24.
|
[13] |
钱石川, 甘强, 任志伟, 等. HNS-Ⅳ炸药一维冲击起爆判据的研究 [J]. 含能材料, 2018, 26(6): 495–501. doi: 10.11943/j.issn.1006-9941.2018.06.006
QIAN S C, GAN Q, REN Z W, et al. Study on one-dimensional shock initiation criterion of HNS-Ⅳ explosive [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 495–501. doi: 10.11943/j.issn.1006-9941.2018.06.006
|
[14] |
郭俊峰, 曾庆轩, 李明愉, 等. HNS-Ⅳ炸药的短脉冲冲击起爆判据 [J]. 高压物理学报, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582
GUO J F, ZENG Q X, LI M Y, et al. Short pulse shock initiation criteria for HNS-Ⅳ explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582
|
[15] |
覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件 [J]. 高压物理学报, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656
QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656
|
[16] |
王万军, 祝明水, 郭菲, 等. 高压短脉冲作用下HNS-IV型炸药的全发火冲击起爆判据 [J]. 含能材料, 2020, 28(6): 569–575. doi: 10.11943/CJEM2019234
WANG W J, ZHU M S, GUO F, et al. Parameters of the all-fire shock initiation criterion for HNS-Ⅳ explosive under the impact of a short-duration high pressure pulse [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 569–575. doi: 10.11943/CJEM2019234
|
[17] |
GREEN L G, NIDICK E J JR, LONGWITH J D. Shock initiation of PBXN-5 and PBX-9604: UCRL-52273 [R]. Livermore: California University, 1997.
|
[18] |
袁俊明, 李硕, 刘玉存, 等. 聚奥-9C装药的传爆管殉爆 [J]. 爆炸与冲击, 2018, 38(3): 632–638. doi: 10.11883/bzycj-2016-0293
YUAN J M, LI S, LIU Y C, et al. Sympathetic detonation of booster pipe with JO-9C charge [J]. Explosion and Shock Waves, 2018, 38(3): 632–638. doi: 10.11883/bzycj-2016-0293
|
[19] |
孙国祥, 戴蓉兰, 陈鲁英, 等. 国内外传爆药的发展概况-传爆药的品种发展 [J]. 现代引信, 1995(1): 56–63.
SUN G X, DAI R L, CHEN L Y, et al. Development overview of booster explosive of domestic and abroad-variety development of booster explosive [J]. Journal of Detection & Control, 1995(1): 56–63.
|
[20] |
HASKINS P J, COOK M D. A modified criterion for the prediction of shock initiation thresholds for flyer plate and rod impacts [C]//14th International Detonation Symposium. Sevenoaks, Kent, UK, 2010.
|
[21] |
BOWDEN M D, MAISEY M P, KNOWLES S L. Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination [J]. AIP Conference Proceedings, 2012, 1426(1): 615.
|
[22] |
HU L S, LIANG K L, LIU Y, et al. The p-t relationship between booster pellet and main charge under shock wave initiation [J]. International Journal of Energetic Materials and Chemical Propulsion, 2021, 20(2): 33–46. doi: 10.1615/IntJEnergeticMaterialsChemProp.2021037566
|
[23] |
HUGONIST S. Report LA-4167-MS, group GMX-6 [R]. Los Alamos: Los Alamost Scientific Laboratory, 1969.
|
[24] |
GOVEAS S G, MILLETT J C F. One-dimensional shock and detonation characterization of ultra-fine hexanitrostilbene [C]//Proceedings of the Conference of the American Physical Soceiety Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland, 2005: 1065−1068.
|
[25] |
TARVER C M, CHIDESTER S K. Ignition and growth modeling of short pulse shock initiation experiments on fine particle hexanitrostilbene (HNS) [J]. Journal of Physics: Conference Series, 2014, 500(5): 052044. doi: 10.1088/1742-6596/500/5/052044
|
[26] |
郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响 [J]. 高压物理学报, 2017, 31(3): 315–320. doi: 10.11858/gywlxb.2017.03.014
GUO J F, ZENG Q X, LI M Y, et al. Influence of flyer material on morphology of flyer driven by micro charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 315–320. doi: 10.11858/gywlxb.2017.03.014
|
[27] |
孙承纬, 韦玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 286−296.
SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 286−296.
|
[28] |
杨小玉. 典型爆炸逻辑网络的数值模拟与可靠性分析研究 [D]. 北京: 北京理工大学, 2018: 9−12.
YANG X Y. Study on the numerical simulation and reliability analysis of a typical explosive logic circuit [D]. Beijing: Beijing Institute of Technology, 2018: 9−12.
|
[29] |
门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015: 140−141, 146.
MEN J B, JIANG J W, WANG S Y. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing: Beijing University of Technology Press, 2015: 140−141, 146.
|