Volume 36 Issue 6
Dec 2022
Turn off MathJax
Article Contents
SUN Jianping, YANG Pengtao, LIU Shaobo, ZHOU Fang, DONG Xiaoli, WEN Haihu, CHENG Jinguang. Pressure Effects on the Tetragonal FeS Superconductor[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060101. doi: 10.11858/gywlxb.20220677
Citation: SUN Jianping, YANG Pengtao, LIU Shaobo, ZHOU Fang, DONG Xiaoli, WEN Haihu, CHENG Jinguang. Pressure Effects on the Tetragonal FeS Superconductor[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060101. doi: 10.11858/gywlxb.20220677

Pressure Effects on the Tetragonal FeS Superconductor

doi: 10.11858/gywlxb.20220677
  • Received Date: 14 Oct 2022
  • Rev Recd Date: 09 Nov 2022
  • Available Online: 30 Nov 2022
  • Issue Publish Date: 05 Dec 2022
  • High-pressure regulation has played an important role in enhancing the superconducting transition temperature (Tc) and revealing the competing electronic orders and superconducting mechanisms of iron-based superconductors. A large number of high-pressure studies have shown that different pressure conditions (hydrostatic vs. non-hydrostatic pressure) can make great differences in the physical properties of condensed matters under high pressure. To unveil the discrepancies of different high-pressure studies on tetragonal FeS, we performed high-pressure magnetic susceptibility and resistivity measurements on tetragonal FeS single crystal up to 11 GPa by using a piston-cylinder and a cubic anvil cell that can produce good hydrostatic pressures. It is found that its Tc decreases monotonically with increasing pressure with a slope of dTc/dp≈−1.5 K/GPa, which indicates that the superconductivity can be completely suppressed at about 3 GPa. When the tetragonal-hexagonal structural phase transition occurs at about 4−5 GPa, the temperature-dependent resistivity changes from metallic to semiconducting behavior, and the resistivity shows continuous increase upon further increasing pressure. No second superconducting phase was observed up to 11 GPa, and our results thus do not support the conclusion that FeS has two superconducting phases at high pressure. Finally, in light of the structural information under pressure, we discussed briefly the underlying mechanism for the distinct pressure evolutions of the physical properties in FeS and FeSe.

     

  • loading
  • [1]
    WU W, CHENG J G, MATSUBAYASHI K, et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs [J]. Nature Communications, 2014, 5: 5508. doi: 10.1038/ncomms6508
    [2]
    CHENG J G, MATSUBAYASHI K, WU W, et al. Pressure induced superconductivity on the border of magnetic order in MnP [J]. Physical Review Letters, 2015, 114(11): 117001. doi: 10.1103/PhysRevLett.114.117001
    [3]
    SUN J P, MATSUURA K, YE G Z, et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe [J]. Nature Communications, 2016, 7: 12146. doi: 10.1038/ncomms12146
    [4]
    LI Y, SUN Z, CAI J W, et al. Pressure-induced charge-order melting and reentrant charge carrier localization in the mixed-valent Pb3Rh7O15 [J]. Chinese Physics Letters, 2017, 34(8): 087201. doi: 10.1088/0256-307X/34/8/087201
    [5]
    ZHANG C, SUN J P, LIU F L, et al. Evidence for pressure-induced node-pair annihilation in Cd3As2 [J]. Physical Review B, 2017, 96(15): 155205. doi: 10.1103/physrevb.96.155205
    [6]
    MATSUDA M, LIN F K, YU R, et al. Evolution of magnetic double helix and quantum criticality near a dome of superconductivity in CrAs [J]. Physical Review X, 2018, 8(3): 031017. doi: 10.1103/PhysRevX.8.031017
    [7]
    SUN J P, JIAO Y Y, YI C J, et al. Magnetic-competition-induced colossal magnetoresistance in n-type HgCr2Se4 under high pressure [J]. Physical Review Letters, 2019, 123(4): 047201. doi: 10.1103/PhysRevLett.123.047201
    [8]
    LIU Z Y, ZHANG T, XU S X, et al. Pressure effect on the anomalous Hall effect of ferromagnetic Weyl semimetal Co3Sn2S2 [J]. Physical Review Materials, 2020, 4(4): 044203. doi: 10.1103/physrevmaterials.4.044203
    [9]
    CHEN K Y, WANG N N, YIN Q W, et al. Double superconducting dome and triple enhancement of Tc in the Kagome superconductor CsV3Sb5 under high pressure [J]. Physical Review Letters, 2021, 126(24): 247001. doi: 10.1103/PhysRevLett.126.247001
    [10]
    WANG N N, CHEN K Y, YIN Q W, et al. Competition between charge-density-wave and superconductivity in the kagome metal RbV3Sb5 [J]. Physical Review Research, 2021, 3(4): 043018. doi: 10.1103/PHYSREVRESEARCH.3.043018
    [11]
    YUAN H Q, GROSCHE F M, DEPPE M, et al. Observation of two distinct superconducting phases in CeCu2Si2 [J]. Science, 2003, 302(5653): 2104–2107. doi: 10.1126/science.1091648
    [12]
    孙建平, 王铂森, 程金光. FeSe单晶的高压研究进展 [J]. 科学通报, 2017, 62(34): 3925–3934. doi: 10.1360/N972017-00713

    SUN J P, WANG B S, CHENG J G. Recent progress on the high-pressure studies of FeSe single crystal [J]. Chinese Science Bulletin, 2017, 62(34): 3925–3934. doi: 10.1360/N972017-00713
    [13]
    SUN J P, YE G Z, SHAHI P, et al. High-Tc superconductivity in FeSe at high pressure: dominant hole carriers and enhanced spin fluctuations [J]. Physical Review Letters, 2017, 118(14): 147004. doi: 10.1103/PhysRevLett.118.147004
    [14]
    SHAHI P, SUN J P, WANG S H, et al. High-Tc superconductivity up to 55 K under high pressure in a heavily electron doped Li0.36(NH3) yFe2Se2 single crystal [J]. Physical Review B, 2018, 97(2): 020508. doi: 10.1103/physrevb.97.020508
    [15]
    孙建平, SHAHI P, 周花雪, 等. 插层FeSe高温超导体的高压研究进展 [J]. 物理学报, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319

    SUN J P, SHAHI P, ZHOU H X, et al. Effect of high pressure on intercalated FeSe high-Tc superconductors [J]. Acta Physica Sinica, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [16]
    SUN J P, SHAHI P, ZHOU H X, et al. Reemergence of high-Tc superconductivity in the (Li1- xFe x)OHFe1- ySe under high pressure [J]. Nature Communications, 2018, 9(1): 380. doi: 10.1038/s41467-018-02843-7
    [17]
    LIU Z Y, DONG Q X, SHAN P F, et al. Pressure-induced metallization and structural phase transition in the quasi-one-dimensional TlFeSe2 [J]. Chinese Physical Letters, 2020, 37(4): 047102. doi: 10.1088/0256-307X/37/4/047102
    [18]
    SUN J P, SHI M Z, LEI B, et al. Pressure-induced second high-Tc superconducting phase in the organic-ion-intercalated (CTA)0.3FeSe single crystal [J]. Europhysics Letters, 2020, 130(6): 67004. doi: 10.1209/0295-5075/130/67004
    [19]
    程金光, 孙建平. 铁硒基超导体的高压研究进展 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(4): 047403. doi: 10.1360/SSPMA-2020-0414

    CHENG J G, SUN J P. Pressure effects on the FeSe-based superconductors [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(4): 047403. doi: 10.1360/SSPMA-2020-0414
    [20]
    HSU F C, LUO J Y, YEH K W, et al. Superconductivity in the PbO-type structure α-FeSe [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14262–14264. doi: 10.1073/pnas.0807325105
    [21]
    MEDVEDEV S, MCQUEEN T M, TROYAN I A, et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure [J]. Nature Materials, 2009, 8(8): 630–633. doi: 10.1038/nmat2491
    [22]
    HOLENSTEIN S, PACHMAYR U, GUGUCHIA Z, et al. Coexistence of low-moment magnetism and superconductivity in tetragonal FeS and suppression of Tc under pressure [J]. Physical Review B, 2016, 93(14): 140506. doi: 10.1103/PhysRevB.93.140506
    [23]
    LAI X F, LIU Y, LÜ X J, et al. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS [J]. Scientific Reports, 2016, 6: 31077. doi: 10.1038/srep31077
    [24]
    ZHANG J, LIU F L, YING T P, et al. Observation of two superconducting domes under pressure in tetragonal FeS [J]. NPJ Quantum Materials, 2017, 2(1): 49. doi: 10.1038/s41535-017-0050-7
    [25]
    SHIMIZU M, TAKEMORI N, GUTERDING D, et al. Two-dome superconductivity in FeS induced by a lifshitz transition [J]. Physical Review Letters, 2018, 121(13): 137001. doi: 10.1103/PhysRevLett.121.137001
    [26]
    LAI X F, ZHANG H, WANG Y Q, et al. Observation of superconductivity in tetragonal FeS [J]. Journal of the American Chemical Society, 2015, 137(32): 10148–10151. doi: 10.1021/jacs.5b06687
    [27]
    LIN H, LI Y F, DENG Q, et al. Multiband superconductivity and large anisotropy in FeS crystals [J]. Physical Review B, 2016, 93(14): 144505. doi: 10.1103/PhysRevB.93.144505
    [28]
    CHENG J G, MATSUBAYASHI K, NAGASAKI S, et al. Integrated-fin gasket for palm cubic-anvil high pressure apparatus [J]. Review of Scientific Instruments, 2014, 85(9): 093907. doi: 10.1063/1.4896473
    [29]
    CHENG J G, WANG B S, SUN J P, et al. Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements [J]. Chinese Physics B, 2018, 27(7): 077403. doi: 10.1088/1674-1056/27/7/077403
    [30]
    YING T P, LAI X F, HONG X C, et al. Nodal superconductivity in FeS: evidence from quasiparticle heat transport [J]. Physical Review B, 2016, 94(10): 100504. doi: 10.1103/PhysRevB.94.100504
    [31]
    TERASHIMA T, KIKUGAWA N, LIN H, et al. Upper critical field and quantum oscillations in tetragonal superconducting FeS [J]. Physical Review B, 2016, 94(10): 100503. doi: 10.1103/PhysRevB.94.100503
    [32]
    BORG C K H, ZHOU X Q, ECKBERG C, et al. Strong anisotropy in nearly ideal tetrahedral superconducting FeS single crystals [J]. Physical Review B, 2016, 93(9): 094522. doi: 10.1103/PhysRevB.93.094522
    [33]
    LUO X G, CHEN X H. Crystal structure and phase diagrams of iron-based superconductors [J]. Science China Materials, 2015, 58(1): 77–89. doi: 10.1007/s40843-015-0022-9
    [34]
    MIZUGUCHI Y, TOMIOKA F, TSUDA S, et al. Substitution effects on FeSe superconductor [J]. Journal of the Physical Society of Japan, 2009, 78(7): 074712. doi: 10.1143/JPSJ.78.074712
    [35]
    MAN H R, GUO J G, ZHANG R, et al. Spin excitations and the Fermi surface of superconducting FeS [J]. NPJ Quantum Materials, 2017, 2(1): 14. doi: 10.1038/s41535-017-0019-6
    [36]
    BAUM A, MILOSAVLJEVIĆ A, LAZAREVIĆ N, et al. Phonon anomalies in FeS [J]. Physical Review B, 2018, 97(5): 054306. doi: 10.1103/PhysRevB.97.054306
    [37]
    TAKELE S, HEARNE G R. Electrical transport, magnetism, and spin-state configurations of high-pressure phases of FeS [J]. Physical Review B, 1999, 60(7): 4401–4403. doi: 10.1103/PhysRevB.60.4401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(407) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return