Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
LIU Xingwang, DENG Xuyan, QIN Qingyang, WANG Yin. Numerical Investigation on Effect of Interface Modelling of Rock-Rubble Shielding Overlays on the Anti-Penetration Capability[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. doi: 10.11858/gywlxb.20220669
Citation: LIU Xingwang, DENG Xuyan, QIN Qingyang, WANG Yin. Numerical Investigation on Effect of Interface Modelling of Rock-Rubble Shielding Overlays on the Anti-Penetration Capability[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. doi: 10.11858/gywlxb.20220669

Numerical Investigation on Effect of Interface Modelling of Rock-Rubble Shielding Overlays on the Anti-Penetration Capability

doi: 10.11858/gywlxb.20220669
  • Received Date: 05 Oct 2022
  • Rev Recd Date: 27 Oct 2022
  • Accepted Date: 09 Mar 2023
  • Available Online: 13 Apr 2023
  • Issue Publish Date: 05 Apr 2023
  • Based on the Kong-Fang concrete material model proposed recently and the three-dimensional mesoscopic model, the penetration of a typical warhead into rock-rubble overlays was numerically simulated. The influence of interface modelling of rock-rubble overlays on the projectile overload (or acceleration), penetration depth and failure in concrete and rock was discussed by considering two well-known methods, i.e., the conode method and surface-to-surface contact method. Numerical results demonstrated that the interface between concrete and rock is overestimated when using the conode method, leading to a larger projectile acceleration and a smaller penetration depth. While the surface-to-surface contact method underestimates the interface effect, resulting in a smaller projectile acceleration and a larger penetration depth. Furthermore, the damage evolutions are different: it is continuous and develops along the interface of concrete and rock using the conode method, while it is only continuous in the area near the projectile and becomes discontinuous beyond this area. Finally, based on the numerical simulations, the practical suggestions for engineering design of rock-rubble overlays are given.

     

  • loading
  • [1]
    闫焕敏, 张志刚, 葛涛, 等. 防护工程中遮弹层的研究进展 [J]. 兵器材料科学与工程, 2016, 39(1): 127–132. doi: 10.14024/j.cnki.1004-244x.20160105.001

    YAN H M, ZHANG Z G, GE T, et al. Research progress of bursting layer in protection engineer [J]. Ordnance Material Science and Engineering, 2016, 39(1): 127–132. doi: 10.14024/j.cnki.1004-244x.20160105.001
    [2]
    AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESL-TR-83-39 [R]. Florida, USA: Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, 1982.
    [3]
    GELMAN M D, RICHARD B N, ITO Y M. Impact of armor-piercing projectile into array of large caliber boulders [R]. Waterways Experiment Station, 1987.
    [4]
    ROHANI B. Penetration of kinetic energy projectiles into rock-rubbles/boulder overlays [R]. Vicksburg, Mississippi, USA: U. S. Army Engineer Waterways Experiment Station, 1987.
    [5]
    LANGHEIM H, PAHL H, SCHMOLINSKE E, et al. Subscale penetration tests with bombs and advanced penetration against hardened structures [C]//The Sixth International Symposium Interaction of Non-Nuclear Munitions with Structures. Panama, Florida, USA: Wright Laboratory Air Base Systems Branch, 1993: 12–17.
    [6]
    姚焕忠, 韩国建, 程国亮. 块石高强固结体抗侵彻性能试验研究 [J]. 防护工程, 2013, 35(3): 17–21.

    YAO H Z, HAN G J, CHENG G L. Experimental research and analysis on anti-penetration performance of nubby stone concretion [J]. Protective Engineering, 2013, 35(3): 17–21.
    [7]
    穆朝民, 施鹏, 辛凯. 射弹侵彻块石遮弹层的数值模拟 [J]. 兵器材料科学与工程, 2012, 35(5): 4–8.

    MU C M, SHI P, XIN K. Numerical simulation on rock anti-penetration layer against penetrating [J]. Ordnance Material Science and Engineering, 2012, 35(5): 4–8.
    [8]
    逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22.

    PANG G W, FANG Q, KONG X Z. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22.
    [9]
    FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. doi: 10.1016/j.ijimpeng.2013.08.010
    [10]
    方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究 [J]. 工程力学, 2013, 30(1): 14–21.

    FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete [J]. Engineering Mechanics, 2013, 30(1): 14–21.
    [11]
    方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. doi: 10.11883/1001-1455(2015)04-0489-07

    FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. doi: 10.11883/1001-1455(2015)04-0489-07
    [12]
    宫俊, 吴昊, 方秦, 等. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟 [J]. 振动与冲击, 2017, 36(1): 55–63.

    GONG J, WU H, FANG Q, et al. Test and mesoscale numerical simulation for corundum-aggregate ultra-high performance cementitious composites against projectile penetration [J]. Journal of Vibration and Shock, 2017, 36(1): 55–63.
    [13]
    方秦, 杜涛, 彭永, 等. 对遮弹层抗弹体侵彻性能的讨论 [J]. 防护工程, 2014, 36(5): 31–36.

    FANG Q, DU T, PENG Y, et al. Discussion on the performance of the overlays against the penetration of projectiles [J]. Protective Engineering, 2014, 36(5): 31–36.
    [14]
    KONG X Z, FANG Q, CHEN L, et al. A new material for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. doi: 10.1016/j.ijimpeng.2018.05.006
    [15]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. doi: 10.1016/j.ijimpeng.2020.103633
    [16]
    WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. doi: 10.1016/j.ijimpeng.2021.103815
    [17]
    KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. doi: 10.1016/j.ijimpeng.2017.02.016
    [18]
    WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1 320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. doi: 10.1016/j.conbuildmat.2014.10.041
    [19]
    HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. doi: 10.1016/j.ijimpeng.2020.103687
    [20]
    YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. doi: 10.1016/j.ijimpeng.2021.103860
    [21]
    HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. doi: 10.1016/j.ijimpeng.2020.103530
    [22]
    LS-DYNA keyword user’s manual version 971 [M]. Livermore Software Technology Corporation (LSTC), 2007.
    [23]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9): 847–873.
    [24]
    方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook constitutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204.
    [25]
    USACE. Structures to resist the effects of accidental explosions: UFC 3−340−02 [R] Washington, DC: USACE, 2014.
    [26]
    FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28: 479–497. doi: 10.1016/S0734-743X(02)00108-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(237) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return