Citation: | SHI Jingfu, YU Dong, XU Huadong, LIU Lei, MIAO Changqing. Strain Rate Effect of UHMWPE and Its Influence on Hypervelocity Impact Performance[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034101. doi: 10.11858/gywlxb.20220666 |
[1] |
常利军, 黄星源, 袁圣林, 等. 压缩载荷下UHMWPE纤维复合材料层合板的力学性能与失效分析 [J]. 高压物理学报, 2023, 37(1): 014102. doi: 10.11858/gywlxb.20220633
CHANG L J, HUANG X Y, YUAN S L, et al. Mechanical properties and failure analysis of UHMWPE fiber composite laminates under compressive load [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014102. doi: 10.11858/gywlxb.20220633
|
[2] |
董澎, 王柯, 李军方, 等. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响 [J]. 高分子学报, 2020, 51(1): 117–124. doi: 10.11777/j.issn1000-3304.2020.19159
DONG P, WANG K, LI J F, et al. Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties [J]. Acta Polymerica Sinica, 2020, 51(1): 117–124. doi: 10.11777/j.issn1000-3304.2020.19159
|
[3] |
付杰, 李伟萍, 黄献聪, 等. 新型超高分子量聚乙烯膜材料防弹性能及机理 [J]. 兵工学报, 2021, 42(11): 2453–2464. doi: 10.3969/j.issn.1000-1093.2021.11.019
FU J, LI W P, HUANG X C, et al. Bullet-proof performance and mechanism of new ultra-high molecular weight polyethylene film [J]. Acta Armamentarii, 2021, 42(11): 2453–2464. doi: 10.3969/j.issn.1000-1093.2021.11.019
|
[4] |
莫根林, 刘静, 金永喜, 等. 超高分子量聚乙烯纤维防护机理研究综述 [J]. 兵器装备工程学报, 2021, 42(10): 23–28. doi: 10.11809/bqzbgcxb2021.10.004
MO G L, LIU J, JIN Y X, et al. Review on protective mechanism of UHMWPE fiber [J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 23–28. doi: 10.11809/bqzbgcxb2021.10.004
|
[5] |
袁子舜, 陆振乾, 许玥, 等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6): 2707−2715.
YUAN Z S, LU Z Q, XU Y, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates [J].Acta Materiae Compositae Sinica, 2022, 39(6): 2707−2715.
|
[6] |
苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654
MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654
|
[7] |
苗常青, 徐铧东, 杜明俊, 等. 芳纶/环氧纤维复合材料超高速撞击特性研究 [J]. 实验力学, 2019, 34(4): 609–615. doi: 10.7520/1001-4888-17-231
MIAO C Q, XU H D, DU M J, et al. On the hypervelocity impact characteristics of aramid/epoxy fiber composite [J]. Journal of Experimental Mechanics, 2019, 34(4): 609–615. doi: 10.7520/1001-4888-17-231
|
[8] |
张鹏, 王志军, 马武伟, 等. 高速弹体侵彻钢/陶瓷/超高分子量聚乙烯纤维/钢实验 [J]. 兵器材料科学与工程, 2016, 39(5): 104–109. doi: 10.14024/j.cnki.1004-244x.20160826.007
ZHANG P, WANG Z J, MA W W, et al. Experiment on high velocity projectile penetrating composite target of steel/ceramic/ultra-high molecular weight polyethylene fiber/steel [J]. Ordnance Material Science and Engineering, 2016, 39(5): 104–109. doi: 10.14024/j.cnki.1004-244x.20160826.007
|
[9] |
张宝玺, 哈跃, 邓云飞, 等. 超高速撞击Kevlar纤维布填充防护结构研究 [J]. 高压物理学报, 2013, 27(1): 105–112. doi: 10.11858/gywlxb.2013.01.015
ZHANG B X, HA Y, DENG Y F, et al. Optimal structural design of stuffed shields with Kevlar fiber clothes against hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 105–112. doi: 10.11858/gywlxb.2013.01.015
|
[10] |
石景富. 聚合物超高速碰撞特性及应变率效应分析 [D]. 哈尔滨: 哈尔滨工业大学, 2021.
SHI J F. Analysis of polymer hypervelocity impact characteristics and strain rate effect [D]. Harbin: Harbin Institute of Technology, 2021.
|
[11] |
赵荣国, 陈朝中, 罗文波, 等. 聚合物材料SHPB实验关键问题 [J]. 固体力学学报, 2011, 32(Suppl 1): 134–144.
ZHAO R G, CHEN C Z, LUO W B, et al. Key problems of SHPB experiments used for polymeric materials [J]. Acta Mechanica Solida Sinica, 2011, 32(Suppl 1): 134–144.
|
[12] |
林玉亮, 卢芳云, 卢力. 高应变率下硅橡胶的本构行为研究 [J]. 高压物理学报, 2007, 21(3): 289–294. doi: 10.3969/j.issn.1000-5773.2007.03.012
LIN Y L, LU F Y, LU L. Constitutive behaviors of silicone rubber at high strain rates [J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 289–294. doi: 10.3969/j.issn.1000-5773.2007.03.012
|
[13] |
王庭辉, 宋顺成, 王明超, 等. 高强度纤维束的动态拉伸性能 [J]. 西南交通大学学报, 2008(5): 638–642. doi: 10.3969/j.issn.0258-2724.2008.05.016
WANG T H, SONG S C, WANG M C, et al. Dynamic tensile properties of high strength fiber bundles [J]. Journal of Southwest Jiaotong University, 2008(5): 638–642. doi: 10.3969/j.issn.0258-2724.2008.05.016
|
[14] |
YANG B, XIONG T, XIONG J. Statistical tensile strength for high strain rate of aramid and UHMWPE fibers [J]. Journal of Materials Engineering, 2006(5): 46–50.
|
[15] |
CHEN L, ZHENG K, FANG Q. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fiber laminates [J]. Polymer Testing, 2017, 63: 54–64. doi: 10.1016/j.polymertesting.2017.07.031
|
[16] |
栗建桥, 宋卫东, 宁建国. 超高速撞击产生的等离子体特性研究 [J]. 高压物理学报, 2013, 27(4): 542–548. doi: 10.11858/gywlxb.2013.04.012
LI J Q, SONG W D, NING J G. A study on characteristics of plasma generated by hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 542–548. doi: 10.11858/gywlxb.2013.04.012
|
[17] |
林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. doi: 10.11858/gywlxb.20190774
LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. doi: 10.11858/gywlxb.20190774
|
[18] |
DHOTE D, VERMA P N. Investigation of hole formation by steel sphere impacting on thin plate at hypervelocity [J]. Thin-Walled Structures, 2018, 126: 38–47.
|
[19] |
张祎, 王玉林, 石景富, 等. 纤维织物超高速碰撞热-力学模型与分析 [J]. 宇航学报, 2021, 42(11): 1475–1482. doi: 10.3873/j.issn.1000-1328.2021.11.014
ZHANG Y, WANG Y L, SHI J F, et al. Modeling and analysis of thermo-mechanical behavior for fiber fabric under hypervelocity impact [J]. Journal of Astronautics, 2021, 42(11): 1475–1482. doi: 10.3873/j.issn.1000-1328.2021.11.014
|
[20] |
徐铧东, 于东, 王玉林, 等. 预张力纤维织物超高速碰撞热-力学特性分析 [J]. 爆炸与冲击, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
XU H D, YU D, WANG Y L, et al. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact [J]. Explosion and Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
|
[21] |
SHINTATE K, SEKINE H. Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method [J]. Composites Part A: Applied Science & Manufacturing, 2004, 35(6): 683–692.
|
[22] |
ZHAO S, SONG Z, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 144: 103586. doi: 10.1016/j.ijimpeng.2020.103586
|
[23] |
徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性 [J]. 复合材料学报, 2021, 38(9): 3123–3132. doi: 10.13801/j.cnki.fhclxb.20201231.001
XU H D, WANG Y L, LIU L, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelovcity impact [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3123–3132. doi: 10.13801/j.cnki.fhclxb.20201231.001
|
[24] |
KATZ S, GROSSMAN E, GOUZMAN I, et al. Response of composite materials to hypervelocity impact [J]. International Journal of Impact Engineering, 2008, 35(12): 1606–1611. doi: 10.1016/j.ijimpeng.2008.07.032
|
[25] |
HEIMBS S, WAGNER T, VIANA J, et al. Comparison of impact behaviour of glass, carbon and dyneema composites [J]. Journal of Mechanical Engineering Science, 2019, 233(3): 951–966.
|
[26] |
ROGERS J A, MOTE A, MEAD P T, et al. Hypervelocity impact response of monolithic UHMWPE and HDPE plates [J]. International Journal of Impact Engineering, 2022, 161: 104081.
|
[27] |
WANG H X, WEERASINGHE D, MOHOTTI D, et al. On the impact response of UHMWPE woven fabrics: experiments and simulations [J]. International Journal of Mechanical Sciences, 2021, 204: 106574.
|
[28] |
CHA J H, KIM Y H, SARATH K, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190.
|
[29] |
杨鹏飞, 汪洋, 夏源明. 基于Hopkinson杆的材料高应变率拉伸实验技术 [J]. 实验力学, 2011, 26(6): 674–679.
YANG P F, WANG Y, XIA Y M. Experimental technique of high strain-rate tension based on Hopkinson bar [J]. Journal of Experimental Mechanics, 2011, 26(6): 674–679.
|
[30] |
朱德举, 张晓彤, 张怀安. 动态拉伸载荷下应变率和温度对Kevlar 49芳纶纤维布增强环氧树脂复合材料力学性能的影响 [J]. 复合材料学报, 2016, 33(3): 459–468.
ZHU D J, ZHANG X T, ZHANG H A. Effects of strain rate and temperature on mechanical properties of Kevlar 49 aramid fabric reinforced epoxy polymers under dynamic tensile loading [J]. Acta Materiae Compositae Sinica, 2016, 33(3): 459–468.
|
[31] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
|
[32] |
彭建祥. Johnson-Cook本构模型和Steinberg本构模型的比较研究 [D]. 绵阳: 中国工程物理研究院, 2006.
PENG J X. Comparative study of Johnson-Cook constitutive model and Steinberg constitutive model [D]. Mianyang: China Academy of Engineering Physics, 2006.
|