Volume 37 Issue 1
Feb 2023
Turn off MathJax
Article Contents
JI Yao, XU Shuangxi, CHEN Wei, LE Jingxia, LI Xiaobin, LI Ying. Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657
Citation: JI Yao, XU Shuangxi, CHEN Wei, LE Jingxia, LI Xiaobin, LI Ying. Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657

Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure

doi: 10.11858/gywlxb.20220657
  • Received Date: 16 Sep 2022
  • Rev Recd Date: 20 Nov 2022
  • Available Online: 10 Feb 2023
  • Issue Publish Date: 05 Feb 2023
  • Due to the low cost, high toughness and energy absorption characteristics of hybrid honeycomb structure under low velocity impact, an Al/carbon fiber reinforced plastics (CFRP)/hybrid honeycomb aluminum composite sandwich multilayer structure was designed. The kinetic energy of the projectile was supposed to be effectively absorbed and the protection was supposed to be achieved through gradually reducing the velocity of the projectile layer by layer. In order to investigate the damage evolution law and energy absorption characteristics, numerical analysis was carried out, and the impact energy effect on the penetration resistance of multilayer structure was discussed. It is found that, compared with the Al/CFRP composite structure, the reaction force given by the structure becomes larger for hybrid honeycomb aluminum. Hence, with an identical energy, the time of the projectile acting on the plate becomes shorter. In the process of anti-penetration of Al/CFRP/hybrid aluminum honeycomb composite sandwich multilayer, the Al plate and CFRP core mainly resist the penetration, and the honeycomb aluminum mainly absorbs the energy of the projectile. When the impact energy is 40 J, the total absorbed energy is 36.79 J, and the specific energy absorption is 0.217 J/g, the honeycomb aluminum core layer absorbs the main part of the energy with the proportion of 30.3%; as the impact energy increases, the proportion increases to 56.2%. This indicates that the energy absorption of the honeycomb aluminum core layer is better when the impact energy increases.

     

  • loading
  • [1]
    孙卫兵. 纤维增强复合材料层合板抗高速破片侵彻性能研究 [D]. 武汉: 武汉理工大学, 2020.

    SUN W B. Research on penetration resistance of fiber reinforced composite laminates under high-speed fragments [D]. Wuhan: Wuhan University of Technology, 2020.
    [2]
    LI L J, SUN L Y, WANG T K, et al. Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates [J]. Aerospace Science and Technology, 2019, 84: 995–1010. doi: 10.1016/j.ast.2018.11.038
    [3]
    马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应 [J]. 爆炸与冲击, 2016, 36(2): 170–176. doi: 10.11883/1001-1455(2016)02-0170-07

    MA X M, LI S Q, LI X, et al. Dynamic response of woven Kevlar/Epoxy composite laminates under impact loading [J]. Explosion and Shock Waves, 2016, 36(2): 170–176. doi: 10.11883/1001-1455(2016)02-0170-07
    [4]
    金子明, 沈峰, 曲志敏, 等. 纤维增强复合材料抗弹性能研究 [J]. 纤维复合材料, 1999, 16(3): 5–9.

    JIN Z M, SHEN F, QU Z M, et al. A study of anti-ballistic properties of FRP [J]. Fiber Composites, 1999, 16(3): 5–9.
    [5]
    ZHOU J J, WEN P H, WANG S N. Numerical investigation on the repeated low-velocity impact behavior of composite laminates [J]. Composites Part B: Engineering, 2020, 185: 107771. doi: 10.1016/j.compositesb.2020.107771
    [6]
    JAROSLAW B, BARBARA S, PATRYK J. The comparison of low-velocity impact resistance of aluminum/carbon and glass fiber metal laminates [J]. Polymer Composites, 2016, 37(4): 1056–1063. doi: 10.1002/pc.23266
    [7]
    RYAN S, SCHAEFER F, DESTEFANIS R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures [J]. Advances in Space Research, 2008, 41(7): 1152–1166. doi: 10.1016/j.asr.2007.02.032
    [8]
    CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields [J]. International Journal of Impact Engineering, 1993, 14(1): 145–156. doi: 10.1016/0734-743X(93)90016-Z
    [9]
    ZHANG D H, FEI Q G, ZHANG P W. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor [J]. Composite Structures, 2017, 168: 633–645. doi: 10.1016/j.compstruct.2017.02.053
    [10]
    MORADA G, OUADDAY R, VADEAN A, et al. Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: experimental and numerical analyses [J]. Composites Part B: Engineering, 2017, 114: 418–431. doi: 10.1016/j.compositesb.2017.01.070
    [11]
    GUO K L, ZHU L, LI Y G, et al. Experimental investigation on the dynamic behaviour of aluminum foam sandwich plate under repeated impacts [J]. Composite Structures, 2018, 200: 298–305. doi: 10.1016/j.compstruct.2018.05.148
    [12]
    XU M M, HUANG G Y, DONG Y X, et al. An experimental investigation into the high velocity penetration resistance of CFRP and CFRP/aluminium laminates [J]. Composite Structures, 2018, 188: 450–460. doi: 10.1016/j.compstruct.2018.01.020
    [13]
    朱倩. 纤维金属层板抗高速冲击性能及损伤机理研究 [D]. 镇江: 江苏大学, 2020.

    ZHU Q. Study on impact resistance and damage mechanism of fiber metal laminates under high velocity impact [D]. Zhenjiang: Jiangsu University, 2020.
    [14]
    李毅翔. Al/CFRP混杂层合板抗低速冲击性能研究 [D]. 长沙: 湖南大学, 2020.

    LI Y X. Study on low velocity impact resistance of Al/CFRP hybrid structures [D]. Changsha: Hunan University, 2020.
    [15]
    HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
    [16]
    刘礼平, 段科好, 徐卓, 等. 碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制 [J]. 复合材料学报, 2023, 40(1): 592–602. doi: 10.13801/j.cnki.fhclxb.20220215.001

    LIU L P, DUAN K H, XU Z, et al. Failure mechanism of carbon fiber reinforced polymer bonded-bolted hybrid connection [J]. Acta Materiae Compositae Sinica, 2023, 40(1): 592–602. doi: 10.13801/j.cnki.fhclxb.20220215.001
    [17]
    XU M C, LIU D B, WANG P D, et al. In-plane compression behavior of hybrid honeycomb metastructures: theoretical and experimental studies [J]. Aerospace Science and Technology, 2020, 106: 106081. doi: 10.1016/j.ast.2020.106081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(234) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return