Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Coalescence Behavior of Voids during One-Dimensional Strain Spallation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024201. doi: 10.11858/gywlxb.20220655
Citation: ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Coalescence Behavior of Voids during One-Dimensional Strain Spallation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024201. doi: 10.11858/gywlxb.20220655

Coalescence Behavior of Voids during One-Dimensional Strain Spallation

doi: 10.11858/gywlxb.20220655
  • Received Date: 15 Sep 2022
  • Rev Recd Date: 20 Oct 2022
  • Available Online: 17 Apr 2023
  • Issue Publish Date: 05 Apr 2023
  • The spallation behavior of the ductile metals is a process involving nucleation, growth and coalescence of voids, and the coalescence of voids is difficult to directly observe experimentally. In this paper, the finite element analysis method was used to study the coalescence behavior and competition mechanism among the voids in the process of the ductile metal spallation. Influences of the initial ligament distance, the void diameter, and the void location distribution on the void coalescence were discussed. Through the real-time statistics of the change in diameter during the growth of the voids, the starting time of the coalescence of the voids was quantitatively analyzed. Results show that when the initial ligament distance increases from 20 μm to 50 μm, the initial time of coalescence among the same voids increases continuously, and the accelerations of the diameter increase decreases from about 1.717 Gm/s2 to 0.602 Gm/s2. When the coalescence occurs between voids with different aperture ratios, small voids preferentially aggregate to big voids. Voids with an angle of 45° have the largest diameter growth acceleration about 3.179 Gm/s2 in the growth stage, and the earliest coalescence occurs. For the coalescence among three voids, the calculation results show that the same voids with the same initial ligament distance aggregate and penetrate almost simultaneously, and the starting time of the coalescence between the voids increases with the increasing of the initial ligament distance. The aggregation of big voids to nearby small voids start later. Calculations in this paper reveal the mesoscopic physical process of void growth and coalescence, which is difficult to observe in spallation experiments, and have important reference value for the entire physical process and nature of the material spallation.

     

  • loading
  • [1]
    ANTOUN T, CURRAN D R, SEAMAN L, et al. Spall fracture [M]. Berlin: Springer, 2003.
    [2]
    MALLICK D D, PARKER J, WILKERSON J W, et al. Estimating void nucleation statistics in laser-driven spall [J]. Journal of Dynamic Behavior of Materials, 2020, 6(3): 268–277. doi: 10.1007/s40870-020-00248-6
    [3]
    JONES D R, FENSIN S J, MARTINEZ D T, et al. Effect of peak stress and tensile strain-rate on spall in tantalum [J]. Journal of Applied Physics, 2018, 124(8): 085901. doi: 10.1063/1.5045045
    [4]
    XIE P C, WANG Y G, SHI T Y, et al. Damage evolution and spall failure in copper under complex shockwave loading conditions [J]. Journal of Applied Physics, 2020, 128(5): 055111. doi: 10.1063/5.0009521
    [5]
    陈伟, 谢普初, 刘东升, 等. 晶粒尺寸对高纯铝板材层裂特性的影响 [J]. 爆炸与冲击, 2021, 41(4): 043102.

    CHEN W, XIE P C, LIU D S, et al. Effect of grain size on the spall behaviors of high-purity aluminum plates [J]. Explosion and Shock Waves, 2021, 41(4): 043102.
    [6]
    CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253−388.
    [7]
    JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. doi: 10.1063/1.329011
    [8]
    王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 绵阳: 中国工程物理研究院, 2006: 39−47.

    WANG Y G. Study on dynamic tensile fracture and critical damage degree of ductile metals [D]. Mianyang: China Academy of Engineering Physics, 2006: 39−47.
    [9]
    ZUREY A K, THISSELL W R, JOHNSON J N, et al. Micromechanics of spall and damage in tantalum [J]. Journal of Materials Processing Technology, 1996, 60(1): 261−267.
    [10]
    TU R C, WEI N, PEI Y M, et al. The effect of compression on the void coalescence under strong dynamic loading [J]. Advances in Materials Science and Engineering, 2022: 1–11.
    [11]
    YANG X, ZENG X, WANG J, et al. Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high strain rates [J]. Mechanics of Materials, 2019, 135(1): 98–113.
    [12]
    ZHAO L Y, LIU Y. Investigation on void growth and coalescence in single crystal copper under high-strain-rate tensile loading by atomistic simulation [J]. Mechanics of Materials, 2020, 151(1): 103615.
    [13]
    王永刚, 徐东明. 高应变率下延性金属中微孔洞贯通行为的数值分析 [J]. 兵工学报, 2012, 33(9): 1095–1100.

    WANG Y G, XU D M. Simulation of void coalescence in ductile metals under high strain rate [J]. Acta Armamentarii, 2012, 33(9): 1095–1100.
    [14]
    HURE J. A coalescence criterion for porous single crystals [J]. Journal of the Mechanics and Physics of Solids, 2019, 124(1): 505–525.
    [15]
    HOLTE I, SRIVASTAVA A, MARTINEZ-PAEDA E, et al. Interaction of void spacing and material size effect on inter-void flow localization [J]. American Society of Mechanical Engineers Digital Collection, 2021, 88(2): 021010.
    [16]
    JIANG Z X, ZHONG Z, XIE P C, et al. Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation [J]. Journal of Applied Physics, 2022, 131(12): 125104. doi: 10.1063/5.0082361
    [17]
    陈伟. 晶粒尺寸对高纯铝动态力学行为与层裂特性的影响 [D]. 宁波: 宁波大学, 2020: 53−58.

    CHEN W. Effect of grain size on dynamic mechanical behavior and spallation characteristics of high-purity aluminum [D]. Ningbo: Ningbo University, 2020: 53−58.
    [18]
    祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉: 武汉理工大学, 2007: 44−46.

    QI M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2007: 44−46.
    [19]
    WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
    [20]
    徐金中, 汤文辉. SPH方法在层裂损伤模拟中的应用 [J]. 强度与环境, 2009, 36(1): 1–7. doi: 10.3969/j.issn.1006-3919.2009.01.001

    XU J Z, TANG W H. Applications of SPH method to simulate spalling damage [J]. Structure & Environment Engineering, 2009, 36(1): 1–7. doi: 10.3969/j.issn.1006-3919.2009.01.001
    [21]
    汤铁钢, 刘仓理. 高应变率拉伸加载下无氧铜的本构模型 [J]. 爆炸与冲击, 2013, 33(6): 581–586. doi: 10.3969/j.issn.1001-1455.2013.06.004

    TANG T G, LIU C L. On the constitutive model for oxygen-free high-conductivity copper under high strain-rate tension [J]. Explosion and Shock Waves, 2013, 33(6): 581–586. doi: 10.3969/j.issn.1001-1455.2013.06.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(189) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return