Citation: | HUANG Shanxiu, CHEN Xiaoyang, ZHANG Chuanxiang, GUO Jiaqi. Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654 |
[1] |
陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述 [J]. 建筑科学与工程学报, 2014, 31(3): 1–24. doi: 10.3969/j.issn.1673-2049.2014.03.002
CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete [J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1–24. doi: 10.3969/j.issn.1673-2049.2014.03.002
|
[2] |
金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望 [J]. 浙江大学学报(工学版), 2002, 36(4): 371–380, 403. doi: 10.3785/j.issn.1008-973X.2002.04.006
JIN W L, ZHAO Y X. State-of-the-art on durability of concrete structures [J]. Journal of Zhejiang University (Engineering Science), 2002, 36(4): 371–380, 403. doi: 10.3785/j.issn.1008-973X.2002.04.006
|
[3] |
王彩辉, 蒋金洋, 任春福, 等. 基于无机纳米混凝土的研究进展 [J]. 材料导报, 2011, 25(Suppl 1): 41–44, 67.
WANG C H, JIANG J Y, REN C F, et al. The study progress of inorganic nano-concrete [J]. Materials Reports, 2011, 25(Suppl 1): 41–44, 67.
|
[4] |
范杰, 熊光晶, 李庚英. 碳纳米管水泥基复合材料的研究进展及其发展趋势 [J]. 材料导报, 2014, 28(11): 142–148.
FAN J, XIONG G J, LI G Y. Progress in research and development of carbon nanotubes-reinforced cement-based composite materials [J]. Materials Reports, 2014, 28(11): 142–148.
|
[5] |
王建雷, 赵云里, 和晓博, 等. 碳纳米管对混凝土性能的影响研究 [J]. 硅酸盐通报, 2016, 35(7): 2193–2197. doi: 10.16552/j.cnki.issn1001-1625.2016.07.036
WANG J L, ZHAO Y L, HE X B, et al. Influence of carbon nanotubes on the properties of concrete [J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2193–2197. doi: 10.16552/j.cnki.issn1001-1625.2016.07.036
|
[6] |
IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56–58. doi: 10.1038/354056a0
|
[7] |
王宝民, 韩瑜, 葛树奎, 等. 碳纳米管在水性体系中的分散性能及机理 [J]. 哈尔滨工程大学学报, 2014, 35(10): 1206–1211. doi: 10.3969/j.issn.1006-7043.201303081
WANG B M, HAN Y, GE S K, et al. Research on the dispersibility and mechanism of carbon nanotubes in aqueous solution [J]. Journal of Harbin Engineering University, 2014, 35(10): 1206–1211. doi: 10.3969/j.issn.1006-7043.201303081
|
[8] |
刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能 [J]. 复合材料学报, 2020, 37(4): 952–961. doi: 10.13801/j.cnki.fhclxb.20190730.004
LIU Q L, LI H C, PENG Y J, et al. Nanomechanical properties of multi-wall carbon nanotubes/cementitious composites [J]. Acta Materiae Compositae Sinica, 2020, 37(4): 952–961. doi: 10.13801/j.cnki.fhclxb.20190730.004
|
[9] |
SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants [J]. Construction and Building Materials, 2017, 155: 389–399.
|
[10] |
施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展 [J]. 复合材料学报, 2018, 35(5): 1033–1049. doi: 10.13801/j.cnki.fhclxb.20180328.003
SHI T, ZHU M, LI Z X, et al. Review of research progress on carbon nanotubes modified cementitious composites [J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033–1049. doi: 10.13801/j.cnki.fhclxb.20180328.003
|
[11] |
JUNG M, LEE Y S, HONG S G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE) [J]. Cement and Concrete Research, 2020, 131: 106017. doi: 10.1016/j.cemconres.2020.106017
|
[12] |
刘洋洋, 孙敏, 冯芳, 等. 改性碳纳米管的掺入对混凝土力学性能的影响 [J]. 混凝土与水泥制品, 2018(2): 26–30. doi: 10.3969/j.issn.1000-4637.2018.02.006
LIU Y Y, SUN M, FENG F, et al. Influence of modified carbon nanotubes on mechanical properties of concrete [J]. China Concrete and Cement Products, 2018(2): 26–30. doi: 10.3969/j.issn.1000-4637.2018.02.006
|
[13] |
牛晓伟, 王永维, 李强, 等. 多壁碳纳米管/水性环氧树脂复合改性多孔水泥混凝土性能研究 [J]. 公路, 2017, 62(1): 174–179.
NIU X W, WANG Y W, LI Q, et al. Research on multi-walled carbon nanotubes/epoxy resin composite modification of porous cement concrete performance [J]. Highway, 2017, 62(1): 174–179.
|
[14] |
刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
|
[15] |
ZHANG Z Z, GAO F. Experimental investigation on the energy evolution of dry and water-saturated red sandstones [J]. International Journal of Mining Science and Technology, 2015, 25(3): 383–388. doi: 10.1016/j.ijmst.2015.03.009
|
[16] |
李忠友, 刘元雪, 姚志华, 等. 基于能量耗散原理的混凝土力学损伤模型 [J]. 土木工程学报, 2019, 52(Suppl 1): 23–30. doi: 10.15951/j.tmgcxb.2019.s1.004
LI Z Y, LI Y X, YAO Z H, et al. Mechanical damage model for concrete based on energy dissipation [J]. China Civil Engineering Journal, 2019, 52(Suppl 1): 23–30. doi: 10.15951/j.tmgcxb.2019.s1.004
|
[17] |
王美英, 郭腾翔. 单轴压缩下混凝土的能量储存和耗散规律研究 [J]. 中国测试, 2022, 48(6): 143–147.
WANG M Y, GUO T X. A study of the energy storage and dissipation laws of concrete under uniaxial compression [J]. China Measurement & Test, 2022, 48(6): 143–147.
|
[18] |
韩辰悦, 庞建勇. 不同应变率下橡胶混凝土抗压性能及能量特性研究 [J]. 硅酸盐通报, 2022, 41(3): 922–930. doi: 10.16552/j.cnki.issn1001-1625.20220113.001
HAN C Y, PANG J Y. Compressive properties and energy characteristics of rubber concrete under different strain rates [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 922–930. doi: 10.16552/j.cnki.issn1001-1625.20220113.001
|
[19] |
袁璞, 朱益胜. 不同龄期碱矿渣陶粒混凝土抗压强度试验与能量特征分析 [J]. 硅酸盐通报, 2022, 41(7): 2292–2298. doi: 10.16552/j.cnki.issn1001-1625.20220510.001
YUAN P, ZHU Y S. Compressive strength test and energy characteristics analysis of alkali slag ceramsite concrete at different ages [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2292–2298. doi: 10.16552/j.cnki.issn1001-1625.20220510.001
|
[20] |
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
|
[21] |
SOLECKI R, CONANT R J. Advanced mechanics of materials [M]. London: Oxford University Press, 2003.
|