Citation: | KONG Zhicheng, HU Jun, HAO Yingqi. Out-of-Plane Mechanical Behaviors of Intorsion Hierarchical Honeycomb-Like Structures[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014202. doi: 10.11858/gywlxb.20220632 |
[1] |
CHEN Z H, LIU L W, GAO S L, et al. Dynamic response of sandwich beam with star-shaped reentrant honeycomb core subjected to local impulsive loading [J]. Thin-Walled Structures, 2021, 161: 107420. doi: 10.1016/j.tws.2020.107420
|
[2] |
于鹏山, 刘志芳, 李世强. 新型仿生蜂窝结构的设计与耐撞性能分析 [J]. 高压物理学报, 2022, 36(1): 014204.
YU P S, LIU Z F, LI S Q. Design and crashworthiness analysis of new bionic honeycomb structure [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014204.
|
[3] |
LUO H, CHEN F, WANG X, et al. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption [J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 1–7. doi: 10.1016/j.compositesa.2019.01.015
|
[4] |
LI Z D, WANG Z G, WANG X X, et al. Bending behavior of sandwich beam with tailored hierarchical honeycomb cores [J]. Thin-Walled Structures, 2020, 157: 107001. doi: 10.1016/j.tws.2020.107001
|
[5] |
QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: a review [J]. Composites Part B: Engineering, 2021, 227: 109393. doi: 10.1016/j.compositesb.2021.109393
|
[6] |
YIN H F, LIU Z P, DAI J L, et al. Crushing behavior and optimization of sheet-based 3D periodic cellular structures [J]. Composites Part B: Engineering, 2020, 182: 107565. doi: 10.1016/j.compositesb.2019.107565
|
[7] |
LIU J F, CHEN W S, HAO H, et al. Numerical study of low-speed impact response of sandwich panel with tube filled honeycomb core [J]. Composite Structures, 2019, 220: 736–748. doi: 10.1016/j.compstruct.2019.04.023
|
[8] |
WANG Z G, LI Z D, ZHOU W, et al. On the influence of structural defects for honeycomb structure [J]. Composites Part B: Engineering, 2018, 142: 183–192. doi: 10.1016/j.compositesb.2018.01.015
|
[9] |
WU Y Z, SUN L F, YANG P, et al. Energy absorption of additively manufactured functionally bi-graded thickness honeycombs subjected to axial loads [J]. Thin-Walled Structures, 2021, 164: 107810. doi: 10.1016/j.tws.2021.107810
|
[10] |
WANG X W, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels [J]. Composite Structures, 2019, 209: 523–534. doi: 10.1016/j.compstruct.2018.11.004
|
[11] |
LIU J F, CHEN W S, HAO H, et al. In-plane crushing behaviors of hexagonal honeycombs with different Poisson’s ratio induced by topological diversity [J]. Thin-Walled Structures, 2021, 159: 107223. doi: 10.1016/j.tws.2020.107223
|
[12] |
WIERZBICKI T. Crushing analysis of metal honeycombs [J]. International Journal of Impact Engineering, 1983, 1(2): 157–174. doi: 10.1016/0734-743X(83)90004-0
|
[13] |
TRAN T N, HOU S J, HAN X, et al. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes [J]. Thin-Walled Structures, 2014, 82: 183–195. doi: 10.1016/j.tws.2014.03.019
|
[14] |
TRAN T N, HOU S, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. doi: 10.1016/j.compstruct.2014.09.019
|
[15] |
PEHLIVAN L, BAYKASOĞLU C. An experimental study on the compressive response of CFRP honeycombs with various cell configurations [J]. Composites Part B: Engineering, 2019, 162: 653–661. doi: 10.1016/j.compositesb.2019.01.044
|
[16] |
SAN HA N, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
|
[17] |
ZHANG Y, HE N, SONG X Y, et al. On impacting mechanical behaviors of side fractal structures [J]. Thin-Walled Structures, 2020, 146: 106490. doi: 10.1016/j.tws.2019.106490
|
[18] |
HUANG W Z, ZHANG Y, XU Y L, et al. Out-of-plane mechanical design of bi-directional hierarchical honeycombs [J]. Composites Part B: Engineering, 2021, 221: 109012. doi: 10.1016/j.compositesb.2021.109012
|
[19] |
LI Z D, SHEN L M, WEI K, et al. Compressive behaviors of fractal-like honeycombs with different array configurations under low velocity impact loading [J]. Thin-Walled Structures, 2021, 163: 107759. doi: 10.1016/j.tws.2021.107759
|
[20] |
WANG Z G, LIU J F. Numerical and theoretical analysis of honeycomb structure filled with circular aluminum tubes subjected to axial compression [J]. Composites Part B: Engineering, 2019, 165: 626–635. doi: 10.1016/j.compositesb.2019.01.070
|
[21] |
WANG Z G, LIU J F. Mechanical performance of honeycomb filled with circular CFRP tubes [J]. Composites Part B: Engineering, 2018, 135: 232–241. doi: 10.1016/j.compositesb.2017.09.048
|
[22] |
PIETRAS D, LINUL E, SADOWSKI T, et al. Out-of-plane crushing response of aluminum honeycombs in-situ filled with graphene-reinforced polyurethane foam [J]. Composite Structures, 2020, 249: 112548. doi: 10.1016/j.compstruct.2020.112548
|
[23] |
WANG Z G, LIU J F, HUI D. Mechanical behaviors of inclined cell honeycomb structure subjected to compression [J]. Composites Part B: Engineering, 2017, 110: 307–314. doi: 10.1016/j.compositesb.2016.10.062
|
[24] |
ZHANG Y, CHEN T T, XU X, et al. Out-of-plane mechanical behaviors of a side hierarchical honeycomb [J]. Mechanics of Materials, 2020, 140: 103227. doi: 10.1016/j.mechmat.2019.103227
|
[25] |
WANG Z G, ZHANG J, LI Z D, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression [J]. International Journal of Mechanical Sciences, 2020, 186: 105893. doi: 10.1016/j.ijmecsci.2020.105893
|
[26] |
ZHANG D H, FEI Q G, JIANG D, et al. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy [J]. Composite Structures, 2018, 192: 289–299. doi: 10.1016/j.compstruct.2018.02.082
|