Volume 36 Issue 6
Dec 2022
Turn off MathJax
Article Contents
ZHU Liuzhen, LI Jiangtao, XU Liang, LI Xuhai, LUO Binqiang, HU Jianbo. Phase Transition of Cerium-Lanthanum Alloys under Planar Impact and Magnetically Driven Ramp Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 061102. doi: 10.11858/gywlxb.20220607
Citation: ZHU Liuzhen, LI Jiangtao, XU Liang, LI Xuhai, LUO Binqiang, HU Jianbo. Phase Transition of Cerium-Lanthanum Alloys under Planar Impact and Magnetically Driven Ramp Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 061102. doi: 10.11858/gywlxb.20220607

Phase Transition of Cerium-Lanthanum Alloys under Planar Impact and Magnetically Driven Ramp Loading

doi: 10.11858/gywlxb.20220607
  • Received Date: 11 Jun 2022
  • Rev Recd Date: 16 Aug 2022
  • Available Online: 16 Nov 2022
  • Issue Publish Date: 05 Dec 2022
  • In order to investigate the compressibility of cerium-lanthanum (CeLa) alloys in the γ phase and the effects of the strain rate on the phase transformation behaviors, two loading techniques, including both the powder-gun-driven planar impact and the magnetically driven ramp compression, are adopted to investigate the Ce-5%La alloys (the mass fraction of La is 5%). The elastic-plastic transition behavior, the equation of state in the γ phase, and the γα phase transition pressures, are obtained from the velocity profile measurement. It is found that isentropic compression waves can be generated upon planar impact into the CeLa alloy, which verifies that the CeLa alloy shows a theoretically predicted abnormal compressibility in the γ phase. Due to the abnormal compressibility, the strain rates of compression obtained from the diagnostic side of the CeLa alloys are close to each other, even though two different loading techniques are applied, as a result, the pressure of γα phase transition in the CeLa alloys is not sensitive to the loading strain rate. The addition of lanthanum into cerium alloys increases the pressure for the dynamic phase transition, showing the feature of phase transformation driven by 4f electron in strongly correlated systems.

     

  • loading
  • [1]
    MAURICE M, TOSI N, SCHWINGER S, et al. A long-lived magma ocean on a young Moon [J]. Science Advances, 2020, 6(28): eaba8949. doi: 10.1126/sciadv.aba8949
    [2]
    BARBONI M, BOEHNKE P, KELLER B, et al. Early formation of the Moon 4.51 billion years ago [J]. Science Advances, 2017, 3(1): e1602365. doi: 10.1126/sciadv.1602365
    [3]
    MUELHAUPT T J, SORGE M E, MORIN J, et al. Space traffic management in the new space era [J]. Journal of Space Safety Engineering, 2019, 6(2): 80–87. doi: 10.1016/j.jsse.2019.05.007
    [4]
    KOKELAAR P, BUSBY C. Subaqueous explosive eruption and welding of pyroclastic deposits [J]. Science, 1992, 257(5067): 196–201. doi: 10.1126/science.257.5067.196
    [5]
    MEYERS M A. 材料的动力学行为 [M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006.
    [6]
    XU L, WANG Z G, LI Z G, et al. Liquid-liquid phase transition in molten cerium during shock release [J]. Applied Physics Letters, 2021, 118(7): 074102. doi: 10.1063/5.0040437
    [7]
    LIPP M J, JENEI Z, CYNN H, et al. Anomalous elastic properties across the γ to α volume collapse in cerium [J]. Nature Communications, 2017, 8(1): 1198. doi: 10.1038/s41467-017-01411-9
    [8]
    ZUBAREVA A N, SOSIKOV V A, UTKIN A V. Investigation of anomalous compressibility of docosane and cerium under shock-wave action [J]. Journal of Physics: Conference Series, 2015, 653(1): 012035. doi: 10.1088/1742-6596/653/1/012035
    [9]
    ZUBAREVA A N, KOLESNIKOV S A, UTKIN A V. Experimental investigation of dynamic compression and spallation of cerium at pressures up to 6 GPa [J]. Journal of Physics: Conference Series, 2014, 500(3): 032010. doi: 10.1088/1742-6596/500/3/032010
    [10]
    LIPP M J, JENEI Z, RUDDLE D, et al. Equation of state measurements by radiography provide evidence for a liquid-liquid phase transition in cerium [J]. Journal of Physics: Conference Series, 2014, 500(3): 032011. doi: 10.1088/1742-6596/500/3/032011
    [11]
    潘昊, 胡晓棉, 吴子辉, 等. 铈低压冲击相变数值模拟研究 [J]. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401

    PAN H, HU X M, WU Z H, et al. Numerical study of shock-induced phase transformation of cerium under low pressure [J]. Acta Physica Sinica, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [12]
    LIPP M J, JACKSON D, CYNN H, et al. Thermal signatures of the kondo volume collapse in cerium [J]. Physical Review Letters, 2008, 101(16): 165703. doi: 10.1103/PhysRevLett.101.165703
    [13]
    JOHANSSON B, RUBAN A V, ABRIKOSOV I A. Comment on “thermal signatures of the kondo volume collapse in cerium” [J]. Physical Review Letters, 2009, 102(18): 189601. doi: 10.1103/PhysRevLett.102.189601
    [14]
    ALLEN J W, MARTIN R M. Kondo volume collapse and the γα transition in cerium [J]. Physical Review Letters, 1982, 49(15): 1106–1110. doi: 10.1103/physrevlett.49.1106
    [15]
    MOTT N F, JONES H. The theory of the properties of metals and alloys [M]. London: Oxford University Press, 1936.
    [16]
    ZENG Z Y, HU C E, LI Z G, et al. High pressure phase transition of Ce-La alloy from first-principles calculations [J]. Journal of Alloys and Compounds, 2015, 640: 201–204. doi: 10.1016/j.jallcom.2015.04.001
    [17]
    DEGTYAREVA O, HOLZAPFEL W B. High pressure phase diagrams of binary lanthanide alloys between La, Ce and Pr [J]. High Pressure Research, 2000, 18(1): 297–303. doi: 10.1080/08957950008200983
    [18]
    WENG J D, WANG X, MA Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser [J]. Review of Scientific Instruments, 2008, 79(11): 113101. doi: 10.1063/1.3020700
    [19]
    WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [20]
    LU Y, CHEN K G, CHENG C, et al. A compact platform for the investigation of material dynamics in quasi-isentropic compression to ~19 GPa [J]. Scientific Reports, 2021, 11(1): 20688. doi: 10.1038/s41598-021-99479-3
    [21]
    ATROSHENKO S A, ZUBAREVA A N, MOROZOV V A, et al. Specific features of the response of cerium to pulsed actions [J]. Physics of the Solid State, 2018, 60(2): 238–243. doi: 10.1134/S106378341802004X
    [22]
    SMITH R F, MINICH R W, RUDD R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon [J]. Physical Review B, 2012, 86(24): 245204. doi: 10.1103/PhysRevB.86.245204
    [23]
    AVRAMI M. Kinetics of phase change.Ⅰ general theory [J]. The Journal of Chemical Physics, 1939, 7(12): 1103–1112. doi: 10.1063/1.1750380
    [24]
    AVRAMI M. Kinetics of phase change.Ⅱ transformation-time relations for random distribution of nuclei [J]. The Journal of Chemical Physics, 1940, 8(2): 212–224. doi: 10.1063/1.1750631
    [25]
    AVRAMI M. Granulation, phase change, and microstructure kinetics of phase change. Ⅲ [J]. The Journal of Chemical Physics, 1941, 9(2): 177–184. doi: 10.1063/1.1750872
    [26]
    SMITH R F, EGGERT J H, SACULLA M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth [J]. Physical Review Letters, 2008, 101(6): 065701. doi: 10.1103/PhysRevLett.101.065701
    [27]
    JENSEN B J, CHERNE F J, VELISAVLJEVIC N. Dynamic experiments to study the α-ε phase transition in cerium [J]. Journal of Applied Physics, 2020, 127(9): 095901. doi: 10.1063/1.5142508
    [28]
    PAVLOVSKII M N, KOMISSAROV V V, KUTSAR A R. Isomorphic γα phase transition of cerium under shock compression [J]. Combustion, Explosion and Shock Waves, 1999, 35(1): 88–91. doi: 10.1007/BF02674392
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(276) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return