Citation: | YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605 |
[1] |
ZHAKHOVSKY V V, BUDZEVICH M M, INOGAMOV N A, et al. Two-zone elastic-plastic single shock waves in solids [J]. Physical Review Letters, 2011, 107(13): 135502. doi: 10.1103/PhysRevLett.107.135502
|
[2] |
ZARETSKY E B, KANEL G I. Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. non-monotonous decay of the elastic wave in vanadium [J]. Journal of Applied Physics, 2014, 115(24): 243502. doi: 10.1063/1.4885047
|
[3] |
KOSITSKI R, STEINBERGER D, SANDFELD S, et al. Shear relaxation behind the shock front in <110> molybdenum: from the atomic scale to continuous dislocation fields [J]. Computational Materials Science, 2018, 149: 125–133. doi: 10.1016/j.commatsci.2018.02.058
|
[4] |
AUSTIN R A. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature [J]. Journal of Applied Physics, 2018, 123(3): 035103. doi: 10.1063/1.5008280
|
[5] |
刘静楠, 叶常青, 陈开果, 等. <100>LiF高速冲击变形过程的晶体塑性有限元模拟 [J]. 高压物理学报, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551
LIU J N, YE C Q, CHEN K G, et al. Crystal plasticity finite element simulation of high-rate shock deformation process of <100> LiF [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551
|
[6] |
GURRUTXAGA-LERMA B, BALINT D S, DINI D, et al. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics [J]. Physical Review Letters, 2015, 114(17): 174301. doi: 10.1103/PhysRevLett.114.174301
|
[7] |
刘静楠, 叶常青, 刘桂森, 等. 高温、高压、高应变速率动态过程晶体塑性有限元理论模型及其应用 [J]. 高压物理学报, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874
LIU J N, YE C Q, LIU G S, et al. Crystal plasticity finite element theoretical models and applications for high temperature, high pressure and high strain-rate dynamic process [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874
|
[8] |
郑松林. 晶体塑性有限元在材料动态响应研究中的应用进展 [J]. 高压物理学报, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725
ZHENG S L. Advances in the study of dynamic response of crystalline materials by crystal plasticity finite element modeling [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725
|
[9] |
LUSCHER D J, ADDESSIO F L, CAWKWELL M J, et al. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine [J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 63–86. doi: 10.1016/j.jmps.2016.09.005
|
[10] |
LLOYD J T, CLAYTON J D, BECKER R, et al. Simulation of shock wave propagation in single crystal and polycrystalline aluminum [J]. International Journal of Plasticity, 2014, 60: 118–144. doi: 10.1016/j.ijplas.2014.04.012
|
[11] |
AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
|
[12] |
MANDAL A, GUPTA Y M. Elastic-plastic deformation of molybdenum single crystals shocked along [100] [J]. Journal of Applied Physics, 2017, 121(4): 045903. doi: 10.1063/1.4974475
|
[13] |
BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates [J]. International Journal of Plasticity, 2004, 20(11): 1983–2006. doi: 10.1016/j.ijplas.2003.09.002
|
[14] |
VOGLER T J, CLAYTON J D. Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 297–335. doi: 10.1016/j.jmps.2007.06.013
|
[15] |
HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413. doi: 10.1016/0022-5096(72)90017-8
|
[16] |
ASARO R J, NEEDLEMAN A. Overview No. 42 texture development and strain hardening in rate dependent polycrystals [J]. Acta Metallurgica, 1985, 33(6): 923–953. doi: 10.1016/0001-6160(85)90188-9
|
[17] |
PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982, 30(6): 1087–1119. doi: 10.1016/0001-6160(82)90005-0
|
[18] |
HUANG Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program [M]. Cambridge: Harvard University, 1991.
|
[19] |
LUSCHER D J, BRONKHORST C A, ALLEMAN C N, et al. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(9): 1877–1894. doi: 10.1016/j.jmps.2013.05.002
|
[20] |
TYUTEREV V G, VAST N. Murnaghan’s equation of state for the electronic ground state energy [J]. Computational Materials Science, 2006, 38(2): 350–353. doi: 10.1016/j.commatsci.2005.08.012
|
[21] |
SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state [J]. Journal of Computational Physics, 2001, 171(2): 678–707. doi: 10.1006/jcph.2001.6801
|
[22] |
HANSEN B L, BEYERLEIN I J, BRONKHORST C A, et al. A dislocation-based multi-rate single crystal plasticity model [J]. International Journal of Plasticity, 2013, 44: 129–146. doi: 10.1016/j.ijplas.2012.12.006
|
[23] |
SHAHBA A, GHOSH S. Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. part Ⅰ: a unified constitutive model and flow rule [J]. International Journal of Plasticity, 2016, 87: 48–68. doi: 10.1016/j.ijplas.2016.09.002
|
[24] |
KUKSIN A Y, YANILKIN A V. Atomistic simulation of the motion of dislocations in metals under phonon drag conditions [J]. Physics of the Solid State, 2013, 55(5): 1010–1019. doi: 10.1134/S1063783413050193
|
[25] |
BLASCHKE D N, BURAKOVSKY L, PRESTON D L. On the temperature and density dependence of dislocation drag from phonon wind [J]. Journal of Applied Physics, 2021, 130(1): 015901. doi: 10.1063/5.0054536
|
[26] |
KANEL G I, RAZORENOV S V, BAUMUNG K, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. Journal of Applied Physics, 2001, 90(1): 136–143. doi: 10.1063/1.1374478
|
[27] |
CHOUDHURI D, GUPTA Y M. Shock compression of aluminum single crystals to 70 GPa: role of crystalline anisotropy [J]. Journal of Applied Physics, 2013, 114(15): 153504. doi: 10.1063/1.4824825
|
[28] |
王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
|
[29] |
胡建波, 俞宇颖, 谭华, 等. 铝的动态屈服强度测量 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 安徽省力学学会, 2006.
|
[30] |
ANDERSSON S, BACKSTROM G. Thermal conductivity and heat capacity of single-crystal LiF and CaF2 under hydrostatic pressure [J]. Journal of Physics C: Solid State Physics, 1987, 20(35): 5951–5952. doi: 10.1088/0022-3719/20/35/011
|
[31] |
MILLER R A, SMITH C S. Pressure derivatives of the elastic constants of LiF and NaF [J]. Journal of Physics and Chemistry of Solids, 1964, 25(12): 1279–1292. doi: 10.1016/0022-3697(64)90043-5
|
[32] |
RODRÍGUEZ-MARTÍNEZ J A, RODRÍGUEZ-MILLÁN M, RUSINEK A, et al. A dislocation-based constitutive description for modeling the behavior of fcc metals within wide ranges of strain rate and temperature [J]. Mechanics of Materials, 2011, 43(12): 901–912. doi: 10.1016/j.mechmat.2011.09.008
|
[33] |
TALLON J L, WOLFENDEN A. Temperature dependence of the elastic constants of aluminum [J]. Journal of Physics and Chemistry of Solids, 1979, 40(11): 831–837. doi: 10.1016/0022-3697(79)90037-4
|
[34] |
THOMAS JR J F. Third-order elastic constants of aluminum [J]. Physical Review, 1968, 175(3): 955–962. doi: 10.1103/PhysRev.175.955
|
[35] |
NIX F C, MACNAIR D. The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron [J]. Physical Review, 1941, 60(8): 597–605. doi: 10.1103/PhysRev.60.597
|
[36] |
RAVAJI B, JOSHI S P. A crystal plasticity investigation of grain size-texture interaction in magnesium alloys [J]. Acta Materialia, 2021, 208: 116743. doi: 10.1016/j.actamat.2021.116743
|
[37] |
刘晶, 刘韧, 季忠, 等. 基于晶粒晶界有限元的激光微冲击成形数值分析 [J]. 中国激光, 2010, 37(1): 291–295. doi: 10.3788/CJL20103701.0291
LIU J, LIU R, JI Z, et al. Numerical analysis of micro laser peen forming based on grain and grain boundary element [J]. Chinese Journal of Lasers, 2010, 37(1): 291–295. doi: 10.3788/CJL20103701.0291
|
[38] |
LIM H, LEE M G, KIM J H, et al. Simulation of polycrystal deformation with grain and grain boundary effects [J]. International Journal of Plasticity, 2011, 27(9): 1328–1354. doi: 10.1016/j.ijplas.2011.03.001
|
[39] |
SHEN Z, WAGONER R H, CLARK W A T. Dislocation pile-up and grain boundary interactions in 304 stainless steel [J]. Scripta Metallurgica, 1986, 20(6): 921–926. doi: 10.1016/0036-9748(86)90467-9
|
[40] |
YUAN W, PANIGRAHI S K, SU J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy [J]. Scripta Materialia, 2011, 65(11): 994–997. doi: 10.1016/j.scriptamat.2011.08.028
|
[41] |
ZHOU G, JEONG W, HOMER E R, et al. A predictive strain-gradient model with no undetermined constants or length scales [J]. Journal of the Mechanics and Physics of Solids, 2020, 145: 104178. doi: 10.1016/j.jmps.2020.104178
|