Citation: | PENG Ao, ZHANG Jingwen, CHEN Xianfeng, SUN Xuxu. A Numerical Study on the Effect of Ignition Pattern on Wavelet Features in Rotating Detonation Waves[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062301. doi: 10.11858/gywlxb.20220593 |
[1] |
ZHOU R, WU D, WANG J P. Progress of continuously rotating detonation engines [J]. Chinese Journal of Aeronautics, 2016, 29(1): 15–29. doi: 10.1016/j.cja.2015.12.006
|
[2] |
WOLAŃSKI P. Application of the continuous rotating detonation to gas turbine [J]. Applied Mechanics and Materials, 2015, 782: 3–12. doi: 10.4028/www.scientific.net/AMM.782.3
|
[3] |
ANAND V, GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities [J]. Progress in Energy and Combustion Science, 2019, 73: 182–234. doi: 10.1016/j.pecs.2019.04.001
|
[4] |
WOLAŃSKI P. Detonative propulsion [J]. Proceedings of the Combustion Institute, 2013, 34(1): 125–158. doi: 10.1016/j.proci.2012.10.005
|
[5] |
YI T H, LOU J, TURANGAN C, et al. Propulsive performance of a continuously rotating detonation engine [J]. Journal of Propulsion and Power, 2011, 27(1): 171–181. doi: 10.2514/1.46686
|
[6] |
HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2009, 19(1): 1–10. doi: 10.1007/s00193-008-0178-2
|
[7] |
SCHWER D A, KAILASANATH K. Numerical study of the effects of engine size on rotating detonation engines [C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2011: 581.
|
[8] |
ZHOU R, WANG J P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines [J]. Shock Waves, 2013, 23(5): 461–472. doi: 10.1007/s00193-013-0440-0
|
[9] |
KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3575–3583. doi: 10.1016/j.proci.2018.05.072
|
[10] |
ANAND V, ST GEORGE A, DRISCOLL R, et al. Characterization of instabilities in a rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649–16659. doi: 10.1016/j.ijhydene.2015.09.046
|
[11] |
YANG C L, WU X S, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine [J]. Experimental Thermal and Fluid Science, 2016, 71: 154–163. doi: 10.1016/j.expthermflusci.2015.10.019
|
[12] |
ZHOU S B, MA H, LIU D K, et al. Experimental study of a hydrogen-air rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14741–14749. doi: 10.1016/j.ijhydene.2017.04.214
|
[13] |
TENG H H, ZHOU L, YANG P F, et al. Numerical investigation of wavelet features in rotating detonations with a two-step induction-reaction model [J]. International Journal of Hydrogen Energy, 2020, 45(7): 4991–5001. doi: 10.1016/j.ijhydene.2019.12.063
|
[14] |
YAMADA T, HAYASHI K, TSUBOI N, et al. Numerical analysis of threshold of limit detonation in rotating detonation engine [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010: 153.
|
[15] |
TSUBOI N, WATANABE Y, KOJIMA T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture [J]. Proceedings of the Combustion Institute, 2015, 35(2): 2005–2013. doi: 10.1016/j.proci.2014.09.010
|
[16] |
SHAO Y T, LIU M, WANG J P. Numerical investigation of rotating detonation engine propulsive performance [J]. Combustion Science and Technology, 2010, 182(11/12): 1586–1597.
|
[17] |
SHAO Y T, WANG J P. Change in continuous detonation wave propagation mode from rotating detonation to standing detonation [J]. Chinese Physics Letters, 2010, 27(3): 034705. doi: 10.1088/0256-307X/27/3/034705
|
[18] |
SHAO Y T, LIU M, WANG J P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance [J]. Chinese Journal of Aeronautics, 2010, 23(6): 647–652. doi: 10.1016/S1000-9361(09)60266-1
|
[19] |
ZHOU R, WANG J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines [J]. Combustion and Flame, 2012, 159(12): 3632–3645. doi: 10.1016/j.combustflame.2012.07.007
|
[20] |
SCHWER D, KAILASANATH K. Numerical investigation of the physics of rotating-detonation-engines [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2195–2202. doi: 10.1016/j.proci.2010.07.050
|
[21] |
SCHWER D, KAILASANATH K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1991–1998. doi: 10.1016/j.proci.2012.05.046
|
[22] |
UEMURA Y, HAYASHI A K, ASAHARA M, et al. Transverse wave generation mechanism in rotating detonation [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1981–1989. doi: 10.1016/j.proci.2012.06.184
|
[23] |
LIU Y, ZHOU W J, YANG Y J, et al. Numerical study on the instabilities in H2-air rotating detonation engines [J]. Physics of Fluids, 2018, 30(4): 046106. doi: 10.1063/1.5024867
|
[24] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. 3rd edtion. Berlin: Springer, 2009.
|
[25] |
KAILASANATH K. Recent developments in the research on rotating-detonation-wave engines [C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. Grapevine: AIAA, 2017: 784.
|
[26] |
ZHAO M J, CLEARY M J, ZHANG H W. Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection [J]. Combustion and Flame, 2021, 225: 291–304. doi: 10.1016/j.combustflame.2020.11.001
|