Volume 36 Issue 6
Dec 2022
Turn off MathJax
Article Contents
LIU Zhiqiang, JU Xiaorong, XUAN Haijun, CHEN Liqiang, HE Zekan. Containment Mechanism and Structural Optimization Research for Disk Containment of High-Energy Rotor[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064101. doi: 10.11858/gywlxb.20220584
Citation: LIU Zhiqiang, JU Xiaorong, XUAN Haijun, CHEN Liqiang, HE Zekan. Containment Mechanism and Structural Optimization Research for Disk Containment of High-Energy Rotor[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064101. doi: 10.11858/gywlxb.20220584

Containment Mechanism and Structural Optimization Research for Disk Containment of High-Energy Rotor

doi: 10.11858/gywlxb.20220584
  • Received Date: 13 May 2022
  • Rev Recd Date: 20 Jun 2022
  • Available Online: 23 Nov 2022
  • Issue Publish Date: 05 Dec 2022
  • In order to study the mechanism for disk containment of high-energy rotor, with test rotor manufactured with precast cracks, containment tests are carried out using a high-speed spin tester, and the nonlinear explicit dynamics commercial software is used to simulate the containment process of the high-energy rotor. It is found that the impacted area and the edge material in the containment case are compressed and sheared respectively after the impact of the disk fragments by test and simulation results. If the local perforation failure does not occur, the penetration of the fragment is determined by the tensile strain energy of the impacted area and the circumferential extension of the case. Then taking some turbine starter disk an example, the thickness and material analysis of the containment ring are discussed. The design method of determining the allowable thickness of the containment ring by the critical containment thickness 1.15 times of the safety factor is proved. By comparing the containment capacity of different materials, it is concluded that using higher ultimate strength and elongation material to achieve significant weight reduction. This study has some significance to the design of the containment structure of the high energy rotor.

     

  • loading
  • [1]
    MOUSA N A, WHALE M D, GROSZMANN D E, et al. The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris: DOT/FAA/AR-96/95 [R]. Washington DC, USA: US Department of Transportation, Federal Aviation Administration, 1997.
    [2]
    XUAN H J, LIU L L, FENG Y M, et al. Containment of high-speed rotating disk fragments [J]. Journal of Zhejiang University–Science A, 2012, 13(9): 665−673.
    [3]
    宣海军, 何泽侃, 牛丹丹, 等. 航空发动机软壁风扇机匣包容性研究 [J]. 航空发动机, 2015, 41(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2015.06.016

    XUAN H J, HE Z K, NIU D D. Investigation on containment of aeroengine soft-wall fan case [J]. Aeroengine, 2015, 41(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2015.06.016
    [4]
    NAIK D, SANKARAN S, MOBASHER B, et al. Development of reliable modeling methodologies for fan blade out containment analysis, part Ⅰ: experimental studies [J]. International Journal of Impact Engineering, 2009, 36(1): 1–11. doi: 10.1016/j.ijimpeng.2008.03.007
    [5]
    STAHLECKER Z, MOBASHER B, RAJAN S D, et al. Development of reliable modeling methodologies for engine fan blade out containment analysis, part Ⅱ: finite element analysis [J]. International Journal of Impact Engineering, 2009, 36(3): 447–459. doi: 10.1016/j.ijimpeng.2008.08.004
    [6]
    XUAN H J, WU R R. Aero-engine turbine blade containment tests using high-speed rotor spin testing facility [J]. Aerospace Science and Technology, 2006, 10(6): 501–508. doi: 10.1016/j.ast.2006.04.006
    [7]
    STAMPER E, HALE S. The use of LS-DYNA model to predict containment of disk burst fragments [C]//Proceedings of 10th International LS-DYNA Users Conference. Dearborn, Michigan, USA, 2008.
    [8]
    HAGG A C, SANKEY G O. The containment of disk burst fragment by cylindrical shells [J] . Journal of Engineering for Gas Turbines & Power, 1974, 96(2): 114.
    [9]
    LI J J, XUAN H J, LIAO L F, et al. Penetration of disk fragments following impact on thin plate [J]. Journal of Zhejiang University–Science A, 2009, 10(5): 677–684. doi: 10.1631/jzus.A0820746
    [10]
    唐金, 唐广, 宣海军, 等. 航空发动机涡轮机匣轮盘包容性研究 [J]. 航空动力学报, 2016, 31(6): 1393−1399.

    TANG J, TANG G, XUAN H J, et al. Investigation on disk containment of aero-engine turbine casing [J]. Journal of Aerospace Power, 2016, 31(6): 1393−1399.
    [11]
    周琳, 王子豪, 文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721

    ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
    [12]
    陈刚. 半穿甲战斗部弹体穿甲效应数值模拟与实验研究 [D]. 绵阳: 中国工程物理研究院, 2006.

    CHEN G. Numerical and experimental investigation on penetration effects of semi-armor-piercing warhead [D]. Mianyang: China Academy of Engineering Physics, 2006.
    [13]
    WANG Y F, YANG Z G. A coupled finite element and meshfree analysis of erosive wear [J]. Tribology International, 2009, 42(2): 373−377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(187) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return