Citation: | LIAO Fang, LI Shiqiang, WU Guiying. Topological Optimization and Dynamic Response of Periodic Porous Sandwich Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054201. doi: 10.11858/gywlxb.20220560 |
[1] |
LI S Q, WU G X, WANG Z H, et al. Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading [J]. International Journal of Mechanical Sciences, 2015, 96/97: 1–12. doi: 10.1016/j.ijmecsci.2015.03.011
|
[2] |
张振聪, 张旭, 黄辉秀, 等. 风电叶片夹芯结构的疲劳性能 [J]. 塑料工业, 2021, 49(11): 79–84. doi: 10.3969/j.issn.1005-5770.2021.11.017
ZHANG Z C, ZHANG X, HUANG H X, et al. Fatigue behavior of sandwich structure of wind turbine blade [J]. China Plastics Industry, 2021, 49(11): 79–84. doi: 10.3969/j.issn.1005-5770.2021.11.017
|
[3] |
陈昕, 朱锡, 张力军, 等. 雷达防弹天线罩夹芯结构设计与性能研究 [J]. 兵工学报, 2010, 31(10): 1298–1302.
CHEN X, ZHU X, ZHANG L J, et al. Design and properties of sandwich structure for ballistic-resistant radome [J]. Acta Armamentarii, 2010, 31(10): 1298–1302.
|
[4] |
徐平, 石瑞瑞, 阮文松, 等. 泡沫铝夹芯结构汽车顶板的研究 [J]. 机械科学与技术, 2016, 35(10): 1636–1640. doi: 10.13433/j.cnki.1003-8728.2016.1027
XU P, SHI R R, RUAN W S, et al. Studying car roof of aluminum foam sandwich structure [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(10): 1636–1640. doi: 10.13433/j.cnki.1003-8728.2016.1027
|
[5] |
MUKHERJEE G S, SARAF M N. Studies on a fiber reinforced plastics honeycomb structure [J]. Polymer Composites, 1994, 15(3): 217–222. doi: 10.1002/pc.750150307
|
[6] |
GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997: 546.
|
[7] |
YU J L, WANG X, WEI Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core [J]. International Journal of Impact Engineering, 2003, 28(3): 331–347. doi: 10.1016/S0734-743X(02)00053-2
|
[8] |
RUAN D, LU G X, WONG Y C. Quasi-static indentation tests on aluminium foam sandwich panels [J]. Composite Structures, 2010, 92(9): 2039–2046. doi: 10.1016/j.compstruct.2009.11.014
|
[9] |
JANDAGHI SHAHI V, MARZBANRAD J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes [J]. Thin-Walled Structures, 2012, 60: 24–37. doi: 10.1016/j.tws.2012.05.015
|
[10] |
HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
|
[11] |
SUN G Y, ZHANG J T, LI S Q, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading [J]. Thin-Walled Structures, 2019, 142: 499–515. doi: 10.1016/j.tws.2019.04.029
|
[12] |
SUN Y L, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling [J]. International Journal of Impact Engineering, 2018, 112: 74–115. doi: 10.1016/j.ijimpeng.2017.10.006
|
[13] |
NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast: part 1: experiments [J]. Composite Structures, 2009, 91(4): 433–441. doi: 10.1016/j.compstruct.2009.04.009
|
[14] |
LI S Q, LI X, WANG Z H, et al. Sandwich panels with layered graded aluminum honeycomb cores under blast loading [J]. Composite Structures, 2017, 173: 242–254. doi: 10.1016/j.compstruct.2017.04.037
|
[15] |
LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025
|
[16] |
YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: an experimental study [J]. International Journal of Impact Engineering, 2015, 75: 100–109. doi: 10.1016/j.ijimpeng.2014.07.019
|
[17] |
CHEN W J, TONG L Y, LIU S T. Concurrent topology design of structure and material using a two-scale topology optimization [J]. Computers & Structures, 2017, 178: 119–128.
|
[18] |
BENDSØE M P. Optimal shape design as a material distribution problem [J]. Structural Optimization, 1989, 1(4): 193–202. doi: 10.1007/BF01650949
|
[19] |
XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization [J]. Computers & Structures, 1993, 49(5): 885–896.
|
[20] |
HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method [J]. Finite Elements in Analysis and Design, 2007, 43(14): 1039–1049. doi: 10.1016/j.finel.2007.06.006
|
[21] |
XIA L, XIA Q, HUANG X D, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review [J]. Archives of Computational Methods in Engineering, 2018, 25(2): 437–478. doi: 10.1007/s11831-016-9203-2
|
[22] |
GUO X, ZHANG W S, ZHANG J, et al. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711–748. doi: 10.1016/j.cma.2016.07.018
|
[23] |
ZHOU Y, ZHANG W H, ZHU J H, et al. Feature-driven topology optimization method with signed distance function [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 1–32. doi: 10.1016/j.cma.2016.06.027
|
[24] |
WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1/2): 227–246.
|
[25] |
LI H, LUO Z, GAO L, et al. Topology optimization for functionally graded cellular composites with metamaterials by level sets [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 340–364. doi: 10.1016/j.cma.2017.09.008
|
[26] |
彭细荣, 隋允康. 考虑破损-安全的连续体结构拓扑优化ICM方法 [J]. 力学学报, 2018, 50(3): 611–621. doi: 10.6052/0459-1879-17-366
PENG X R, SUI Y K. ICM method for fail-safe topology optimization of continuum structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611–621. doi: 10.6052/0459-1879-17-366
|
[27] |
YOO S H, CHANG S H, SUTCLIFFE M P F. Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 427–434. doi: 10.1016/j.compositesa.2009.11.010
|
[28] |
WANG L S, BASU P K, LEIVA J P. Automobile body reinforcement by finite element optimization [J]. Finite Elements in Analysis and Design, 2004, 40(8): 879–893. doi: 10.1016/S0168-874X(03)00118-5
|
[29] |
CAVAZZUTI M, BALDINI A, BERTOCCHI E. High performance automotive chassis design: a topology optimization based approach [J]. Structural and Multidisciplinary Optimization, 2011, 44(1): 45–56. doi: 10.1007/s00158-010-0578-7
|
[30] |
MRZYGŁÓD M, KUCZEK T. Uniform crashworthiness optimization of car body for high-speed trains [J]. Structural and Multidisciplinary Optimization, 2014, 49(2): 327–336. doi: 10.1007/s00158-013-0972-z
|
[31] |
HUANG X, XIE Y M, LU G. Topology optimization of energy-absorbing structures [J]. International Journal of Crashworthiness, 2007, 12(6): 663–675. doi: 10.1080/13588260701497862
|
[32] |
DUDDECK F, HUNKELER S, LOZANO P, et al. Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata [J]. Structural and Multidisciplinary Optimization, 2016, 54(3): 415–428. doi: 10.1007/s00158-016-1445-y
|
[33] |
PATEL N M, KANG B S, RENAUD J E, et al. Crashworthiness design using topology optimization [J]. Journal of Mechanical Design, 2009, 131(6): 061013. doi: 10.1115/1.3116256
|
[34] |
SOTO C A. Structural topology optimization for crashworthiness [J]. International Journal of Crashworthiness, 2004, 9(3): 277–283. doi: 10.1533/ijcr.2004.0288
|
[35] |
PARK G J. Technical overview of the equivalent static loads method for non-linear static response structural optimization [J]. Structural and Multidisciplinary Optimization, 2011, 43(3): 319–337. doi: 10.1007/s00158-010-0530-x
|
[36] |
NELSON M F, WOLF JR J A. The use of inertia relief to estimate impact loads [C]//Proceeding of the 2nd International Conference on Vehicle Structural Mechanics. SAE, 1977: 149−155.
|
[37] |
WU S Z, ZHENG G, SUN G Y, et al. On design of multi-cell thin-wall structures for crashworthiness [J]. International Journal of Impact Engineering, 2016, 88: 102–117. doi: 10.1016/j.ijimpeng.2015.09.003
|
[38] |
孙晓辉, 丁晓红. 结构多目标拓扑优化设计 [J]. 机械设计与研究, 2018, 28(4): 1–4, 9. doi: 10.13952/j.cnki.jofmdr.2012.04.016
SUN X H, DING X H. Research on multi-objective topology optimization design methods for structure [J]. Machine Design and Research, 2018, 28(4): 1–4, 9. doi: 10.13952/j.cnki.jofmdr.2012.04.016
|
[39] |
DAVIS J R, JOSEPH R. Metals handbook [M]. Ohio: Materials Park, 1998: 878.
|
[40] |
KARAGIOZOVA D, NURICK G N, LANGDON G S. Behaviour of sandwich panels subject to intense air blasts: part 2: numerical simulation [J]. Composite Structures, 2009, 91(4): 442–450. doi: 10.1016/j.compstruct.2009.04.010
|