Volume 36 Issue 3
May. 2022
Turn off MathJax
Article Contents
SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559
Citation: SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559

High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure

doi: 10.11858/gywlxb.20220559
  • Received Date: 06 Apr 2022
  • Rev Recd Date: 27 Apr 2022
  • Issue Publish Date: 30 May 2022
  • HMX is a high-energy explosive with excellent performance and is widely used in weapons. The phase transition law of HMX, especially under non-hydrostatic pressure, is controversial. In this work, a high-pressure Raman experimental study of HMX crystals under non-hydrostatic pressure was carried out using different pressure-transmitting media. The HMX crystal undergoes three phase transitions at pressures of 4.9, 13.9 and 17.5 GPa, respectively. Under the pressure of 13.9 GPa, HMX began to undergo phase transition from structure Ⅱ to structure Ⅲ, and the two phases existed simultaneously within a certain pressure range; another new phase (structure Ⅳ) began to appear from 17.5 GPa. The three-phase coexistence of structure Ⅱ, structure Ⅲ and structure Ⅳ appeared in the pressure range of 17.5−23.6 GPa. Importantly, the phase transition process of HMX crystals under non-hydrostatic pressure is completely different from the phase transition path under quasi-hydrostatic pressure, and the pressure gradient under non-hydrostatic pressure environment is the reason for the difference.

     

  • loading
  • [1]
    FABBIANI F P A, PULHAM C R. High-pressure studies of pharmaceutical compounds and energetic materials [J]. Chemical Society Reviews, 2006, 35(10): 932–942. doi: 10.1039/b517780b
    [2]
    MCCRONE W C. Crystallographic data 36: cyclotetramethylene tetranitramine (HMX) [J]. Analytical Chemistry, 1950, 22(9): 1225–1226. doi: 10.1021/ac60045a050
    [3]
    SHARIA O, TSYSHEVSKY R, KUKLJA M M. Surface-accelerated decomposition of δ-HMX [J]. The Journal of Physical Chemistry Letters, 2013, 4(5): 730–734. doi: 10.1021/jz302166p
    [4]
    CHOI C S, BOUTIN H P. A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction [J]. Acta Crystallographica Section B, 1970, 26(9): 1235–1240. doi: 10.1107/S0567740870003941
    [5]
    GALLAGHER H G, MILLER J C, SHEEN D B, et al. Mechanical properties of β-HMX [J]. Chemistry Central Journal, 2015, 9: 22. doi: 10.1186/s13065-015-0091-6
    [6]
    LI H, LI Y, BAI L F, et al. Acceleration of δ- to β-HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
    [7]
    GOETZ F, BRILL T B, FERRARO J R. Pressure dependence of the Raman and infrared spectra of α-, β-, γ-, and δ- octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. The Journal of Physical Chemistry, 1978, 82(17): 1912–1917. doi: 10.1021/j100506a011
    [8]
    GAO C, ZHANG X Y, ZHANG C C, et al. Effect of pressure gradient and new phases for 1, 3, 5-trinitrohexahydro-s-triazine (RDX) under high pressures [J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14374–14383. doi: 10.1039/C8CP01192C
    [9]
    SUN X Y, WANG X Q, LIANG W T, et al. Pressure-induced conformer modifications and electronic structural changes in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) up to 20 GPa [J]. The Journal of Physical Chemistry C, 2018, 122(28): 15861–15867. doi: 10.1021/acs.jpcc.8b03323
    [10]
    DICK J J. A comparison of the shock and static compression curves for four solid explosives [J]. Journal of Energetic Materials, 1983, 1(3): 275–286. doi: 10.1080/07370658308010622
    [11]
    YOO C S, CYNN H. Equation of state, phase transition, decomposition of β-HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7- tetrazocine) at high pressures [J]. The Journal of Chemical Physics, 1999, 111(22): 10229–10235. doi: 10.1063/1.480341
    [12]
    PRAVICA M, GALLEY M, KIM E, et al. A far- and mid-infrared study of HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) under high pressure [J]. Chemical Physics Letters, 2010, 500(1): 28–34. doi: 10.1016/j.cplett.2010.09.072
    [13]
    GAO D X, HUANG J, LIN X H, et al. Phase transitions and chemical reactions of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine under high pressure and high temperature [J]. RSC Advances, 2019, 9(10): 5825–5833. doi: 10.1039/C8RA10638J
    [14]
    SUI Z L, SUN X Y, LIANG W T, et al. Phase confirmation and equation of state of β-HMX under 40 GPa [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30121–30128. doi: 10.1021/acs.jpcc.9b09061
    [15]
    YAN T, WANG J H, LIU Y C, et al. Growth and morphology of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetraazacy-clooct ane (HMX) crystal [J]. Journal of Crystal Growth, 2015, 430: 7–13. doi: 10.1016/j.jcrysgro.2015.07.031
    [16]
    BRAND H V, RABIE R L, FUNK D J, et al. Theoretical and experimental study of the vibrational spectra of the α, β, and δ phases of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) [J]. The Journal of Physical Chemistry B, 2002, 106(41): 10594–10604. doi: 10.1021/jp020909z
    [17]
    LEVITAS V I, SHVEDOV L K. Low-pressure phase transformation from rhombohedral to cubic BN: experiment and theory [J]. Physical Reviow B, 2002, 65(10): 104109. doi: 10.1103/PhysRevB.65.104109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(1160) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return