Citation: | XIAO You, ZHI Xiaoqi, WANG Qi, YU Yongli, FAN Xinghua. Influence of Flame Characteristics on Fast Cook-off[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557 |
[1] |
GROSS M L, HEDMAN T D, MEREDITH K V. Considerations for fast cook-off simulations [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1036–1043. doi: 10.1002/prep.201500253
|
[2] |
YANG H W, YU Y G, YE R, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. doi: 10.1016/j.jlp.2015.11.028
|
[3] |
SAHIN H, NARIN B, KURTULUS D F. Development of a design methodology against fast cook-off threat for insensitive munitions [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 580–587. doi: 10.1002/prep.201500333
|
[4] |
AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396–400. doi: 10.1016/j.jhazmat.2010.11.015
|
[5] |
ASANTE D O, KIM S, CHAE J, et al. CFD cook-off simulation and thermal decomposition of confined high energetic material [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 699–705. doi: 10.1002/prep.201400296
|
[6] |
YE Q, YU Y G. Numerical simulation of cook-off characteristics for AP/HTPB [J]. Defence Technology, 2018, 14(5): 451–456. doi: 10.1016/j.dt.2018.06.013
|
[7] |
王帅. 输运热对炸药快烤响应特性影响的研究 [D]. 太原: 中北大学, 2020.
WANG S. Study on the effect of transport heat on the response characteristics of explosives fast cook-off [D]. Taiyuan: North University of China, 2020.
|
[8] |
REHM R G, BAUM H R. The equations of motion for thermally driven, buoyant flows [J]. Journal of Research of the National Bureau of Standards, 1978, 83(3): 297–308. doi: 10.6028/jres.083.019
|
[9] |
WICKSTRÖM U, ROBBINS A, BAKER G. The use of adiabatic surface temperature to design structures for fire exposure [J]. Journal of Structural Fire Engineering, 2011, 2(1): 21–28. doi: 10.1260/2040-2317.2.1.21
|
[10] |
葛绍岩, 那鸿悦. 热辐射性质及其测量 [M]. 北京: 科学出版社, 1989.
GE S Y, NA H Y. Thermal radiation properties and measurement [M]. Beijing: Science Press, 1989.
|
[11] |
杨世铭, 陶文铨. 传热学 [M]. 北京: 高等教育出版社, 2006.
YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
|
[12] |
WICKSTRÖM U. The plate thermometer: a simple instrument for reaching harmonized fire resistance tests [J]. Fire Technology, 1994, 30(2): 195–208. doi: 10.1007/BF01040002
|
[13] |
任玉新, 陈海昕. 计算流体力学基础 [M]. 北京: 清华大学出版社, 2006.
REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
|
[14] |
MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Proceedings of the 7th Symposium on Detonation. Annapolis, Maryland, US: Office of Naval Research, 1981.
|
[15] |
ABD-ELGHANY M, ELBEIH A, HASSANEIN S. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods [J]. Central European Journal of Energetic Materials, 2016, 13(3): 714–735. doi: 10.22211/cejem/64954
|
[16] |
陈朗, 王沛, 冯长根. 考虑相变的炸药烤燃数值模拟计算 [J]. 含能材料, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017
CHEN L, WANG P, FENG C G. Numerical simulation of cook-off about phase transition of explosive [J]. Chinese Journal of Energetic Materials, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017
|
[17] |
徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
|
[18] |
COOKE J A, BELLUCCI M, SMOOKE M D, et al. Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames [J]. Proceedings of the Combustion Institute, 2005, 30(1): 439–446. doi: 10.1016/j.proci.2004.08.046
|
[19] |
VIOLI A, YAN S, EDDINGS E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixtures [J]. Combustion Science and Technology, 2002, 174(11/12): 399–417. doi: 10.1080/00102200215080
|
[20] |
CATHONNET M, VOISIN D, ETSOULI A, et al. Kerosene combustion modelling using detailed and reduced chemical kinetic mechanisms [C]// Symposium Applied Vehicle Technology Panel on Gas Turbine Engine Combustion (RTO Meeting Proceedings). Lisbon, Portugal: NATO Research and Technology Organisation, 1999.
|
[21] |
曾娇. 开放空间航空煤油池火燃烧数值模拟 [D]. 哈尔滨: 哈尔滨工程大学, 2016.
ZENG J. Numerical simulation of aviation fuel pool fire in open air [D]. Harbin: Harbin Engineering University, 2016.
|
[1] | LIANG Mingyang, ZHI Xiaoqi, YU Yongli, XIAO You. Effect of Charge Defects on the Fast Cook-off Response Characteristics of Cast PBX Explosive Charge[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045101. doi: 10.11858/gywlxb.20240893 |
[2] | DONG Zelin, QU Kepeng, HU Xueyao, XIAO Wei, WANG Yixin. Cook-Off Characteristics of HMX-Based Pressed Charges with Different Sizes[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025102. doi: 10.11858/gywlxb.20230757 |
[3] | LIU Runze, WANG Xinjie, LIU Ruifeng, DUAN Zhuoping, HUANG Fenglei. Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538 |
[4] | MIAO Guanghong, LI Liang, JIANG Xiangyang, LIU Wenzhen, LI Xuejiao, WANG Quan, YU Yong, SHEN Zhaowu. Numerical Simulation of Double-Sided Explosive Welding[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045202. doi: 10.11858/gywlxb.20180513 |
[5] | MIAO Guang-Hong, WANG Zhang-Wen, LI Liang, JIANG Xiang-Yang, LIU Wen-Zhen, CHENG Yang-Fan, WANG Quan, YU Yong, MA Hong-Hao, SHEN Zhao-Wu. Numerical Simulation of Boundary Effect in Explosive Cladding[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 93-96. doi: 10.11858/gywlxb.2017.01.014 |
[6] | YANG Xiao, ZHI Xiao-Qi, YANG Bao-Lang, LI Juan-Juan. Influence of Charge Structure on the Cook-off Temperature Distribution of Solid Rocket Motor[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 433-442. doi: 10.11858/gywlxb.2017.04.012 |
[7] | CAO Wei, HE Zhong-Qi, CHEN Wang-Hua. Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009 |
[8] | REN Jian-Hua, XU Yi-Ji, ZHAO Jian, ZHAO Xu-Long, ZHANG Meng. Numerical Simulation Analysis of Particle Impacting Breaking Rock[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 89-94. doi: 10.11858/gywlxb.2012.01.013 |
[9] | DONG He-Fei, ZHAO Yan-Hong, HONG Tao. Numerical Simulation of the Deflagration-to-Detonation Transition Behavior of Explosive HMX[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 601-607. doi: 10.11858/gywlxb.2012.06.001 |
[10] | MA Zhong-Liang, LIU Lin-Lin, XIAO Zhong-Liang. Mathematical Model and Numerical Simulation of Two-Phase Flow Interior Ballistics of Variable Burning-Rate Propellant[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 102-106. doi: 10.11858/gywlxb.2012.01.015 |
[11] | WU Jun-Ying, WANG De-Wu, CHEN Lang, WANG Shu-Shan, HAN Xiu-Feng. Experiments and Numerical Simulations of Bullet Impact Tests for Explosives with Shell[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 401-408 . doi: 10.11858/gywlxb.2010.06.001 |
[12] | WANG Xin-Zheng, ZHANG Song-Lin, ZOU Guang-Ping. Numerical Analysis on Fragmentation Properties of the Steel Cylinder Subjected to Detonation of Internal Short Cylinderical Explosive Charge[J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 61-66 . doi: 10.11858/gywlxb.2010.01.011 |
[13] | LIU Qun, CHEN Lang, LU Jian-Ying, ZHANG Ming. Numerical Simulation of Explosive Particles Compaction[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 421-426 . doi: 10.11858/gywlxb.2009.06.004 |
[14] | CHEN Lang, LU Jian-Ying, ZHANG Ming, HAN Chao, FENG Chang-Gen. Experiment and Numerical Simulation of Cylindrical Explosive Isostatic Pressing[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 113-117 . doi: 10.11858/gywlxb.2008.02.001 |
[15] | TIAN Zhan-Dong, LI Shou-Cang, DUAN Zhuo-Ping, ZHANG Zhen-Yu. Numerical Simulation of the Trace of Projectiles Penetrating Concrete[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 354-358 . doi: 10.11858/gywlxb.2007.04.004 |
[16] | GUI Ming-Yue, FAN Bao-Chun, DONG Gang, YU Lu-Jun. Numerical Investigations of Detonation Induced by Implosion Flame inResonator Cavity[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 151-156 . doi: 10.11858/gywlxb.2007.02.006 |
[17] | LIANG Long-He, CAO Ju-Zhen, YUAN Xian-Chun. 2-D Nummerical Simulation of Characteristics of Underwater Explosions[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 203-208 . doi: 10.11858/gywlxb.2004.03.003 |
[18] | CAO Yu-Zhong, LU Ze-Sheng, GUAN Huai-An, ZHANG You-Ping. Numerical Simulations of Blast Flow-fields in Closed Blast-Resistant Containers[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 127-133 . doi: 10.11858/gywlxb.2001.02.009 |
[19] | HUA Jin-Song, JING Fu-Qian, GONG Zi-Zheng, TAN Hua, XU Nan-Xian, DONG Yu-Bin, CHEN Dong-Quan. Study of Numerical Simulation for Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 195-202 . doi: 10.11858/gywlxb.2000.03.007 |
[20] | LIN Hua-Ling, YU Wan-Rui. Numerical Simulation of the Radiance in Shock Temperature Measurement[J]. Chinese Journal of High Pressure Physics, 1995, 9(1): 59-68 . doi: 10.11858/gywlxb.1995.01.010 |