Volume 36 Issue 6
Dec 2022
Turn off MathJax
Article Contents
ZHANG Tao, JIANG Jun, SUN Weifu. Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064204. doi: 10.11858/gywlxb.20220552
Citation: ZHANG Tao, JIANG Jun, SUN Weifu. Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064204. doi: 10.11858/gywlxb.20220552

Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene

doi: 10.11858/gywlxb.20220552
  • Received Date: 31 Mar 2022
  • Rev Recd Date: 21 Apr 2022
  • Issue Publish Date: 05 Dec 2022
  • In order to explore the influence of projectile geometry on the dynamic mechanical response of graphene, two projectile designs with different shapes and different structural size ratios under the same shape have been considered using molecular dynamics simulation. The mechanical response of single/multi-layer graphene under impact was studied by characterizing the residual velocity of the projectile, kinetic energy consumption, the damage state of graphene and the propagation state of stress wave. The results show that the residual velocity and kinetic energy consumption of different shapes of projectiles impacting graphene can be roughly divided into three regions with the change of impact velocity. The impact of spherical and hemispherical projectiles is similar, but cylindrical projectiles exhibits large difference. The damage of graphene by cylindrical projectiles is stronger than those by spherical and hemispherical projectiles, and the fractal theory model can quantitatively describe the morphology of graphene holes. The “barrier effect” generated by the flat head of cylindrical projectiles can better explain the ballistic limit velocities of penetrating monolayer and bilayer graphene, which are lower than or close to those of spherical and hemispherical impact, respectively. For the same shape of hemispherical projectile, the penetration capability increases with the increase of the size ratio, but the enhancing effect brought about by the increase of the size ratio does not last continuously.

     

  • loading
  • [1]
    BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene [J]. Solid State Communications, 2008, 146(9/10): 351–355. doi: 10.1016/j.ssc.2008.02.024
    [2]
    BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902–907. doi: 10.1021/nl0731872
    [3]
    LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996
    [4]
    陈济桁. 石墨烯在防弹领域的发展现状和产业应用简析 [J]. 新材料产业, 2021(4): 44–48. doi: 10.19599/j.issn.1008-892x.2021.04.012
    [5]
    武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景 [J]. 航空材料学报, 2019, 39(5): 34–44. doi: 10.11868/j.issn.1005-5053.2019.000097

    WU Y, WANG X D, LIU D, et al. Development and application analysis of ceramic composites armor for helicopter [J]. Journal of Aeronautical Materials, 2019, 39(5): 34–44. doi: 10.11868/j.issn.1005-5053.2019.000097
    [6]
    LIOU J C, JOHNSON N L. Risks in space from orbiting debris [J]. Science, 2006, 311(5759): 340–341. doi: 10.1126/science.112133
    [7]
    LEE J H, LOYA P E, LOU J, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration [J]. Science, 2014, 346(6213): 1092–1096. doi: 10.1126/science.1258544
    [8]
    AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques [J]. Parallel Computing, 2012, 38(4/5): 245–259. doi: 10.1016/j.parco.2011.08.005
    [9]
    XIA K, ZHAN H F, HU D A, et al. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile [J]. Scientific Reports, 2016, 6: 33139. doi: 10.1038/srep33139
    [10]
    HAQUE B Z, CHOWDHURY S C, GILLESPIE J W JR. Molecular simulations of stress wave propagation and perforation of graphene sheets under transverse impact [J]. Carbon, 2016, 102: 126–140. doi: 10.1016/j.carbon.2016.02.033
    [11]
    QIU Y, ZHANG Y, ADEMILOYE A S, et al. Molecular dynamics simulations of single-layer and rotated double-layer graphene sheets under a high velocity impact by fullerene [J]. Computational Materials Science, 2020, 182: 109798. doi: 10.1016/j.commatsci.2020.109798
    [12]
    MENG Z X, SINGH A, QIN X, et al. Reduced ballistic limit velocity of graphene membranes due to cone wave reflection [J]. Extreme Mechanics Letters, 2017, 15: 70–77. doi: 10.1016/j.eml.2017.06.001
    [13]
    吴凯, 王涛, 沈杰. 不同结构穿甲弹弹头侵彻金属靶板性能分析 [J]. 机械设计与制造工程, 2014, 43(1): 31–34. doi: 10.3969/j.issn.2095-509X.2014.01.008

    WU K, WANG T, SHEN J. The performance analysis of different structure metal target board resistance to armour-piercing bullet [J]. Manufacturing Information Engineering of China, 2014, 43(1): 31–34. doi: 10.3969/j.issn.2095-509X.2014.01.008
    [14]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [15]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [16]
    HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5
    [17]
    STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. The Journal of Chemical Physics, 2000, 112(14): 6472–6486. doi: 10.1063/1.481208
    [18]
    BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 783–802. doi: 10.1088/0953-8984/14/4/312
    [19]
    韩同伟, 贺鹏飞, 王健, 等. 单层石墨烯薄膜拉伸变形的分子动力学模拟 [J]. 新型炭材料, 2010, 25(4): 261–266.

    HAN T W, HE P F, WANG J, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New Carbon Materials, 2010, 25(4): 261–266.
    [20]
    ZHANG H, LIU Z W, ZHONG X C, et al. Lennard-Jones interatomic potentials for the allotropes of carbon [EB/OL]. (2018−07−01). https://arxiv.org/abs/1805.10614.
    [21]
    涂新斌, 王思敬. 图像分析的颗粒形状参数描述 [J]. 岩土工程学报, 2004, 26(5): 659–662. doi: 10.3321/j.issn:1000-4548.2004.05.018

    TU X B, WANG S J. Particle shape descriptor in digital image analysis [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 659–662. doi: 10.3321/j.issn:1000-4548.2004.05.018
    [22]
    MENG Z X, HAN J L, QIN X, et al. Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates [J]. Carbon, 2018, 126: 611–619. doi: 10.1016/j.carbon.2017.10.068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(300) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return