Citation: | YANG Kun, WU Yanqing, HUANG Fenglei. Effects of Heating-Induced Phase Transition on Damage for HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030105. doi: 10.11858/gywlxb.20220545 |
[1] |
ASAY B W. Non-shock initiation of explosives [M]. New York: Springer, 2010.
|
[2] |
DAI X G, WEN Y S, WEN M P, et al. Projectile impact ignition and reaction violent mechanism for HMX-based polymer bonded explosives at high temperature [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 799–808. doi: 10.1002/prep.201600130
|
[3] |
文玉史, 文雯, 代晓淦, 等. 相变与微裂纹对HMX晶体高温下撞击感度的影响机制 [J]. 含能材料, 2019, 27(3): 184–189. doi: 10.11943/CJEM2018116
WEN Y S, WEN W, DAI X G, et al. Influence mechanism of phase transition and micro cracks on impact sensitivity of HMX crystal at high temperature [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 184–189. doi: 10.11943/CJEM2018116
|
[4] |
郜婵, 孙晓宇, 梁文韬, 等. RDX, HMX及CL-20晶体的高温高压相变研究进展 [J]. 含能材料, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088
GAO C, SUN X Y, LIANG W T, et al. Review on phase transition of RDX, HMX and CL-20 crystals under high temperature and high pressure [J]. Chinese Journal of Energetic Materials, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088
|
[5] |
HENSON B F, ASAY B W, SANDER R K, et al. Dynamic measurement of the HMX β-δ phase transition by second harmonic generation [J]. Physical Review Letters, 1999, 82(6): 1213–1216. doi: 10.1103/PhysRevLett.82.1213
|
[6] |
HU W J, WU Y Q, HUANG F L, et al. Numerical simulation analyses of β↔δ phase transition for a finite-sized HMX single crystal subjected to thermal loading [J]. RSC Advances, 2018, 8(44): 24873–24882. doi: 10.1039/C8RA02649A
|
[7] |
WANG X J, WU Y Q, HU W J, et al. Anisotropic mechanical-thermal-phase transformation response of cyclotetramethylene tetranitramine (HMX) single crystal under ramp loading [J]. International Journal of Solids and Structures, 2020, 200: 170–187. doi: 10.1016/j.ijsolstr.2020.05.024
|
[8] |
胡惟佳. 高温下炸药晶体尺度相变效应及损伤点火响应研究 [D]. 北京: 北京理工大学, 2020.
HU W J. Phase transition and damage ignition response of explosives under high temperature at the crystal scale [D]. Beijing: Beijing Institute of Technology, 2020.
|
[9] |
XUE C, SUN J, KANG B, et al. The β-δ phase transition and thermal expansion of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4): 333–338. doi: 10.1002/prep.200900036
|
[10] |
WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition [J]. Journal of Applied Physics, 2015, 118(5): 055901. doi: 10.1063/1.4927614
|
[11] |
代晓淦. 高温下HMX基PBX炸药撞击响应规律及影响机制研究 [D]. 北京: 北京理工大学, 2018.
DAI X G. Impact responses and influence mechanisms of HMX-based polymer-bonded explosives subjected to elevated temperature [D]. Beijing: Beijing Institute of Technology, 2018.
|
[12] |
HENSON B F, SMILOWITZ L, ASAY B W, et al. The β–δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. The Journal of Chemical Physics, 2002, 117(8): 3780–3788. doi: 10.1063/1.1495398
|
[13] |
范正杰, 刘占芳. 升温和降温引起TATB基PBX炸药脱黏的数值分析 [J]. 应用数学和力学, 2020, 41(9): 956–973. doi: 10.21656/1000-0887.410062
FAN Z J, LIU Z F. Numerical analysis on debonding of crystal-binder interface in TATB-based polymer-bonded explosive caused by heating and cooling processes [J]. Applied Mathematics and Mechanics, 2020, 41(9): 956–973. doi: 10.21656/1000-0887.410062
|
[14] |
TAN H, LIU C, HUANG Y, et al. The cohesive law for the particle/matrix interfaces in high explosives [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1892–1917. doi: 10.1016/j.jmps.2005.01.009.
|
[15] |
XIA Q Z, WU Y Q, HUANG F L. Effect of interface behaviour on damage and instability of PBX under combined tension–shear loading [J]. Defence Technology, 2022.
|
[1] | LI Huikuan, HUANG Shanxiu, CHEN Xiaoyang, GUO Jiaqi. Acoustic Emission and Damage Evolution Characteristics of Carbon Nanotube Concrete Three-Point Bending Beam[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 014101. doi: 10.11858/gywlxb.20240850 |
[2] | ZONG Xianghua, WANG Yin, KONG Xiangzhen, JIANG Yating, SUN Liuyang, YUAN Juncheng, YANG Taochun. Numerical Investigation on Damage and Failure of UHPC Targets Subjected to Dislocation Multi-Attacks[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834 |
[3] | SHI Liutong, HUANG Youqi, GAO Yubo, JIA Zhe, LI Zhihao. JH2 Constitutive Model of Inorganic Bulletproof Glass with Damage[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044105. doi: 10.11858/gywlxb.20240704 |
[4] | QIU Peng, YUE Zhongwen. Stress Distribution and Propagation Mechanism of Crack Tip in Directional Fracturing Blasting under the Influence of Free Boundary[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054104. doi: 10.11858/gywlxb.20240799 |
[5] | JI Zhe, YUE Wenhao, SU Hong, GONG Yue, YAN Zhengtuan, LIU Buqing, CHEN Guodong, HAN Yujian. Study on the Behavior of Blasting Crack Propagation under Different Crack Widths[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064107. doi: 10.11858/gywlxb.20240733 |
[6] | WU Yanmeng, LI Hongwei, SU Hong, LIANG Hao, HUANG Xinxu, LIU Tao, CHU Yakun. Crack Propagation Law of Notch Blasting under Unidirectional Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 064102. doi: 10.11858/gywlxb.20230716 |
[7] | ZHU Zihui, GUO Jiaqi, SUN Feiyue, ZHANG Hengyuan. Experimental Study on Acoustic Emission and Crack Propagation of Fissured Sandstone with Different Moisture States[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054103. doi: 10.11858/gywlxb.20230665 |
[8] | CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, PENG Lei. Relation between Crack Propagation and Decoupling Charging Coefficient in Deep Rock Blasting[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649 |
[9] | JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606 |
[10] | SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559 |
[11] | WANG Mufei, LI Zhiqiang. Numerical Simulation of Crack Propagation and Damage Behavior of Glass Plates under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054203. doi: 10.11858/gywlxb.20220558 |
[12] | SUI Zhilei, HU Qiushi, SHANG Hailin, FU Hua, ZHENG Xianxu. Influence of High Temperature Phase Transformation and Cracks on Ignition of HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030104. doi: 10.11858/gywlxb.20220550 |
[13] | WANG Haoyang, WEI Ying, QIAO Li. Simulation of Dynamic Crack Propagation in Superconducting Nb3Sn at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034201. doi: 10.11858/gywlxb.20210884 |
[14] | LI Hongwei, LEI Zhan, JIANG Xiangyang, LIU Wei, HE Zhiwei, ZHANG Binbin. Numerical Analysis of Impact of Shot Hole Spacing on Crack Growth in Rock[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044103. doi: 10.11858/gywlxb.20180683 |
[15] | GAO Ning, ZHU Zhi-Wu. Experimental Study of Wide Strain Rates and Constitutive Model Based on Damage of 5083 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 51-60. doi: 10.11858/gywlxb.2017.01.008 |
[16] | GUAN Gong-Shun, HA Yue, PANG Bao-Jun. Damage Characteristics of Rear Walls of Aluminum Whipple Shields by Oblique Hypervelocity Impact of Aluminum Spheres[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 1-6. doi: 10.11858/gywlxb.2012.01.001 |
[17] | LI Qiang, YANG Chao, ZHAN Zai-Ji. Damage and Cracking of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Amorphous Alloy under Planar Shock Compression[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 108-112 . doi: 10.11858/gywlxb.2007.01.018 |
[18] | ZHANG Peng, BAI Shu-Lin, ZHOU Wen-Ling. Study on Microstructures and Damage Evolution of a Substitute of Polymer Bonded Explosive[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 319-325 . doi: 10.11858/gywlxb.2003.04.013 |
[19] | ZHAO Fang-Fang, LUO Jing-Run, TIAN Chang-Jin, JIN Zhou-Geng, HE Ying-Bo. The Crack Growth Process of Particulate Filled Polymer Monitored by Acoustic Emission[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 235-240 . doi: 10.11858/gywlxb.2000.03.014 |
[20] | ZHAO Min, SUN Feng-Guo, TANG Rong-Qi. Numerical Calculation for Latent Heat and Thermal Expansion Coefficient of a Two Dimensional Hard Disk System[J]. Chinese Journal of High Pressure Physics, 1993, 7(2): 152-155 . doi: 10.11858/gywlxb.1993.02.013 |