Citation: | YANG Kun, WU Yanqing, HUANG Fenglei. Effects of Heating-Induced Phase Transition on Damage for HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030105. doi: 10.11858/gywlxb.20220545 |
[1] |
ASAY B W. Non-shock initiation of explosives [M]. New York: Springer, 2010.
|
[2] |
DAI X G, WEN Y S, WEN M P, et al. Projectile impact ignition and reaction violent mechanism for HMX-based polymer bonded explosives at high temperature [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 799–808. doi: 10.1002/prep.201600130
|
[3] |
文玉史, 文雯, 代晓淦, 等. 相变与微裂纹对HMX晶体高温下撞击感度的影响机制 [J]. 含能材料, 2019, 27(3): 184–189. doi: 10.11943/CJEM2018116
WEN Y S, WEN W, DAI X G, et al. Influence mechanism of phase transition and micro cracks on impact sensitivity of HMX crystal at high temperature [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 184–189. doi: 10.11943/CJEM2018116
|
[4] |
郜婵, 孙晓宇, 梁文韬, 等. RDX, HMX及CL-20晶体的高温高压相变研究进展 [J]. 含能材料, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088
GAO C, SUN X Y, LIANG W T, et al. Review on phase transition of RDX, HMX and CL-20 crystals under high temperature and high pressure [J]. Chinese Journal of Energetic Materials, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088
|
[5] |
HENSON B F, ASAY B W, SANDER R K, et al. Dynamic measurement of the HMX β-δ phase transition by second harmonic generation [J]. Physical Review Letters, 1999, 82(6): 1213–1216. doi: 10.1103/PhysRevLett.82.1213
|
[6] |
HU W J, WU Y Q, HUANG F L, et al. Numerical simulation analyses of β↔δ phase transition for a finite-sized HMX single crystal subjected to thermal loading [J]. RSC Advances, 2018, 8(44): 24873–24882. doi: 10.1039/C8RA02649A
|
[7] |
WANG X J, WU Y Q, HU W J, et al. Anisotropic mechanical-thermal-phase transformation response of cyclotetramethylene tetranitramine (HMX) single crystal under ramp loading [J]. International Journal of Solids and Structures, 2020, 200: 170–187. doi: 10.1016/j.ijsolstr.2020.05.024
|
[8] |
胡惟佳. 高温下炸药晶体尺度相变效应及损伤点火响应研究 [D]. 北京: 北京理工大学, 2020.
HU W J. Phase transition and damage ignition response of explosives under high temperature at the crystal scale [D]. Beijing: Beijing Institute of Technology, 2020.
|
[9] |
XUE C, SUN J, KANG B, et al. The β-δ phase transition and thermal expansion of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4): 333–338. doi: 10.1002/prep.200900036
|
[10] |
WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition [J]. Journal of Applied Physics, 2015, 118(5): 055901. doi: 10.1063/1.4927614
|
[11] |
代晓淦. 高温下HMX基PBX炸药撞击响应规律及影响机制研究 [D]. 北京: 北京理工大学, 2018.
DAI X G. Impact responses and influence mechanisms of HMX-based polymer-bonded explosives subjected to elevated temperature [D]. Beijing: Beijing Institute of Technology, 2018.
|
[12] |
HENSON B F, SMILOWITZ L, ASAY B W, et al. The β–δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. The Journal of Chemical Physics, 2002, 117(8): 3780–3788. doi: 10.1063/1.1495398
|
[13] |
范正杰, 刘占芳. 升温和降温引起TATB基PBX炸药脱黏的数值分析 [J]. 应用数学和力学, 2020, 41(9): 956–973. doi: 10.21656/1000-0887.410062
FAN Z J, LIU Z F. Numerical analysis on debonding of crystal-binder interface in TATB-based polymer-bonded explosive caused by heating and cooling processes [J]. Applied Mathematics and Mechanics, 2020, 41(9): 956–973. doi: 10.21656/1000-0887.410062
|
[14] |
TAN H, LIU C, HUANG Y, et al. The cohesive law for the particle/matrix interfaces in high explosives [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1892–1917. doi: 10.1016/j.jmps.2005.01.009.
|
[15] |
XIA Q Z, WU Y Q, HUANG F L. Effect of interface behaviour on damage and instability of PBX under combined tension–shear loading [J]. Defence Technology, 2022.
|