Citation: | LIU Runze, WANG Xinjie, LIU Ruifeng, DUAN Zhuoping, HUANG Fenglei. Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538 |
[1] |
李玉斌, 黄辉, 潘丽萍, 等. 高氯酸铵的包覆降感与应用研究 [J]. 含能材料, 2014(6): 792–797. doi: 10.11943/j.issn.1006-9941.2014.06.015
LI Y B, HUANG H, PAN L P, et al. Desensitizing technology of AP by coating and its application [J]. Chinese Journal of Energetic Materials, 2014(6): 792–797. doi: 10.11943/j.issn.1006-9941.2014.06.015
|
[2] |
刘子如, 施震灏, 阴翠梅, 等. 热红联用研究AP与RDX和HMX混合体系的热分解 [J]. 火炸药学报, 2007, 30(5): 57–61. doi: 10.3969/j.issn.1007-7812.2007.05.015
LIU Z R, SHI Z H, YIN C M, et al. Investigation on thermal decomposition of mixed systems of AP with RDX and HMX by DSC-TG-FTIR [J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 57–61. doi: 10.3969/j.issn.1007-7812.2007.05.015
|
[3] |
LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX [J]. Defence Technology, 2017, 13(6): 422–427. doi: 10.1016/j.dt.2017.05.022
|
[4] |
陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2005, 13(6): 393–396. doi: 10.3969/j.issn.1006-9941.2005.06.013
CHEN Z E, TANG C Z, ZHAO X B. Relationship between slow cook-off behaviour and thermal decomposition characteristics of solid propellant [J]. Chinese Journal of Energetic Materials, 2005, 13(6): 393–396. doi: 10.3969/j.issn.1006-9941.2005.06.013
|
[5] |
李苗苗, 郑亭亭, 陈静静, 等. HMX含量对HTPE推进剂热安全性的影响 [J]. 固体火箭技术, 2020, 43(2): 229–236. doi: 10.7673/j.issn.1006-2793.2020.02.015
LI M M, ZHENG T T, CHEN J J, et al. Influence of HMX content on thermal safety characteristics of HTPE propellant [J]. Journal of Solid Rocket Technology, 2020, 43(2): 229–236. doi: 10.7673/j.issn.1006-2793.2020.02.015
|
[6] |
KIM Y, PARK Y, YOH J J. Slow and rapid thermal decomposition characteristics of enhanced blast explosives for burning in fuel-rich, oxygen-rich conditions [J]. Thermochimica Acta, 2019, 678: 178300. doi: 10.1016/j.tca.2019.178300
|
[7] |
王琼, 丁黎, 张冬梅, 等. 含AP的浇铸PBX炸药的热安全性 [J]. 含能材料, 2015, 23(7): 693–696. doi: 10.11943/j.issn.1006-9941.2015.07.016
WANG Q, DING L, ZHANG D M, et al. Thermal safety of casted PBX containing AP [J]. Chinese Journal of Energetic Materials, 2015, 23(7): 693–696. doi: 10.11943/j.issn.1006-9941.2015.07.016
|
[8] |
王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. doi: 10.3969/j.issn.1006-9941.2009.01.012
WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. doi: 10.3969/j.issn.1006-9941.2009.01.012
|
[9] |
代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010
DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010
|
[10] |
刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. doi: 10.3969/j.issn.1000-1093.2019.05.011
LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. doi: 10.3969/j.issn.1000-1093.2019.05.011
|
[11] |
吴浩, 段卓平, 白孟璟, 等. DNAN基含铝炸药烤燃实验与数值模拟 [J]. 含能材料, 2021, 29(5): 414–521. doi: 10.11943/CJEM2020298
WU H, DUAN Z P, BAI M J, et al. Small-scale cook-off experiments and simulations of DNAN-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 414–521. doi: 10.11943/CJEM2020298
|
[12] |
冯长根. 热爆炸理论 [M]. 北京: 科学出版社, 1988.
|
[13] |
寇永锋, 陈朗, 马欣, 等. 黑索今基含铝炸药烤燃试验和数值模拟 [J]. 兵工学报, 2019, 40(5): 978–989. doi: 10.3969/j.issn.1000-1093.2019.05.010
KOU Y F, CHEN L, MA X, et al. Cook-off experimental and numerical simulation of RDX-based aluminized explosives [J]. Acta Armamentarii, 2019, 40(5): 978–989. doi: 10.3969/j.issn.1000-1093.2019.05.010
|
[14] |
PERRY W L, GUNDERSON J A, BALKEY M M, et al. Impact-induced friction ignition of an explosive: infrared observations and modeling [J]. Journal of Applied Physics, 2010, 108(8): 084902. doi: 10.1063/1.3487932
|
[15] |
TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170
|
[16] |
KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27(4): 822–827. doi: 10.2514/1.B34099
|
[17] |
张端庆. 火药用原材料性能与制备 [M]. 北京: 北京理工大学出版社, 1995.
|
[18] |
RAJIĆ M, SUĆESKA M. Study of thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG [J]. Journal of Thermal Analysis and Calorimetry, 2000, 63(2): 375–386. doi: 10.1023/A:1010136308310
|
[19] |
BOLDYREV V V. Thermal decomposition of ammonium perchlorate [J]. Thermochimica Acta, 2006, 443(1): 1–36. doi: 10.1016/j.tca.2005.11.038
|