Volume 36 Issue 5
Oct 2022
Turn off MathJax
Article Contents
CHEN Wen, GUO Baoqiao, GUO Yansong, LUAN Kedi, RAN Chun, CHEN Pengwan. Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528
Citation: CHEN Wen, GUO Baoqiao, GUO Yansong, LUAN Kedi, RAN Chun, CHEN Pengwan. Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528

Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy

doi: 10.11858/gywlxb.20220528
  • Received Date: 08 Mar 2022
  • Rev Recd Date: 30 Mar 2022
  • Accepted Date: 08 Apr 2022
  • Issue Publish Date: 11 Oct 2022
  • TB8 (Ti-15Mo-2.7Nb-3Al-0.2Si) is a metastable β titanium alloy, which plays an important role in the aerospace field. Microstructure, strain and strain rate are three important factors affecting mechanical properties of TB8 titanium alloy. Based on a universal material testing machine and a split Hopkinson pressure bar (SHPB) device, the effect of solution and aging heat treatment process on mechanical properties of TB8 titanium alloy was studied. Optical microscope (OM) and scanning electron microscope (SEM) were used to characterize the microstructure and section morphology of the specimens before and after deformation. The results show that short strip α phase precipitates inside the alloy after solution and aging treatment, and the size and quantity of secondary phase increase with aging temperature increasing. Under different loading conditions, the strain rate strengthening effect of TB8 titanium alloy before and after heat treatment is obvious, but the strain strengthening effect is not obvious under dynamic loading condition. With the increase of aging temperature, the yield strength of the alloy decreases and the plasticity increases. The failure mode of specimens under dynamic loading is typical shear failure. Adiabatic shear band is the precursor of crack formation and specimen failure.

     

  • loading
  • [1]
    ANKEM S, GREENE C A. Recent developments in microstructure/property relationships of beta titanium alloys [J]. Materials Science and Engineering: A, 1999, 263(2): 127–131. doi: 10.1016/S0921-5093(98)01170-8
    [2]
    张昭, 郭保桥, 冉春, 等. 固溶温度对TB6钛合金动态力学性能和微观组织的影响 [J]. 高压物理学报, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762

    ZHANG Z, GUO B Q, RAN C, et al. Effect of solution temperature on dynamic mechanical properties and microstructure of TB6 titanium alloy [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762
    [3]
    邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能 [J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713

    ZOU X T, ZHANG X Q, YAO X H. Dynamic behavior of TB6 titanium alloy under shear-compression loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
    [4]
    DUAN Y P, LI P, XUE K M, et al. Flow behavior and microstructure evolution of TB8 alloy during hot deformation process [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1199–1204. doi: 10.1016/S1003-6326(07)60249-0
    [5]
    李敏娜, 马保飞, 郭金明, 等. 高强韧TB8钛合金的热处理制度 [J]. 金属热处理, 2021, 46(9): 116–119. doi: 10.13251/j.issn.0254-6051.2021.09.019

    LI M N, MA B F, GUO J M, et al. Heat treatment of TB8 titanium alloy with high strength and toughness [J]. Heat Treatment of Metals, 2021, 46(9): 116–119. doi: 10.13251/j.issn.0254-6051.2021.09.019
    [6]
    张利军, 王幸运, 常辉, 等. 固溶温度对TB8钛合金组织及性能的影响 [J]. 金属热处理, 2013, 38(6): 83–86. doi: 10.13251/j.issn.0254-6051.2013.06.033

    ZHANG L J, WANG X Y, CHANG H, et al. Effects of solution temperature on microstructure and properties of TB8 titanium alloy [J]. Heat Treatment of Metals, 2013, 38(6): 83–86. doi: 10.13251/j.issn.0254-6051.2013.06.033
    [7]
    葛鹏, 赵永庆, 周廉. β钛合金的强化机理 [J]. 材料导报, 2005, 19(12): 52–55, 63. doi: 10.3321/j.issn:1005-023X.2005.12.015

    GE P, ZHAO Y Q, ZHOU L. Strengthening mechanism of beta titanium alloys [J]. Materials Review, 2005, 19(12): 52–55, 63. doi: 10.3321/j.issn:1005-023X.2005.12.015
    [8]
    赵聪, 石晓辉, 曹聪, 等. 固溶冷却方式和时效温度对TB8钛合金组织和拉伸性能的影响[J/OL]. 热加工工艺, 2022, 51(14): 126−130.

    ZHAO C, SHI X H, CAO C, et al. Effects of solution cooling modes and aging temperature on microstructure and tensile properties of TB8 titanium alloy [J/OL]. Hot Working Technology, 2022, 51(14): 126−130.
    [9]
    张利军, 田军强, 白钰, 等. TB8超高强钛合金的热处理工艺 [J]. 中国有色金属学报, 2010, 20(Suppl 1): 670–673. doi: 10.19476/j.ysxb.1004.0609.2010.s1.141

    ZHANG L J, TIAN J Q, BAI Y, et al. Heat treatment process of TB8 titanium alloy [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Suppl 1): 670–673. doi: 10.19476/j.ysxb.1004.0609.2010.s1.141
    [10]
    董洪波, 姜智勇, 周盛武, 等. 预时效对TB8钛合金超塑性的影响 [J]. 材料研究学报, 2018, 32(7): 541–546. doi: 10.11901/1005.3093.2017.542

    DONG H B, JIANG Z Y, ZHOU S W, et al. Effect of pre-aging on superplasticity of TB8 Ti-alloy [J]. Chinese Journal of Materials Research, 2018, 32(7): 541–546. doi: 10.11901/1005.3093.2017.542
    [11]
    马权, 曹迪. 双级时效处理对TB8合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38(10): 41–45. doi: 10.13289/j.issn.1009-6264.2017-0183

    MA Q, CAO D. Effect of double aging treatment on microstructure and mechanical property of TB8 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 41–45. doi: 10.13289/j.issn.1009-6264.2017-0183
    [12]
    徐铁伟, 李金山, 张丰收, 等. TB8钛合金双级时效过程中的组织演变及时效响应 [J]. 材料热处理学报, 2016, 37(2): 58–64. doi: 10.13289/j.issn.1009-6264.2016.02.011

    XU T W, LI J S, ZHANG F S, et al. Microstructure evolution and aging response during duplex aging of TB8 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37(2): 58–64. doi: 10.13289/j.issn.1009-6264.2016.02.011
    [13]
    FERRERO J G. Candidate materials for high-strength fastener applications in both the aerospace and automotive industries [J]. Journal of Materials Engineering and Performance, 2005, 14(6): 691–696. doi: 10.1361/105994905X75466
    [14]
    XU T W, LI J S, ZHANG F S, et al. Microstructure evolution during cold-deformation and aging response after annealing of TB8 titanium alloy [J]. Rare Metal Materials and Engineering, 2016, 45(3): 575–580. doi: 10.1016/S1875-5372(16)30075-3
    [15]
    TANG B, TANG B, HAN F B, et al. Influence of strain rate on stress induced martensitic transformation in β solution treated TB8 alloy [J]. Journal of Alloys and Compounds, 2013, 565: 1–5. doi: 10.1016/j.jallcom.2013.02.173
    [16]
    黄伯云, 李成功, 石力开, 等. 中国材料工程大典 [M]. 北京: 化学工业出版社, 2006: 677−678.

    HUANG B Y, LI C G, SHI L K, et al. China materials engineering canon [M]. Beijing: Chemical Industry Press, 2006: 677−678.
    [17]
    宁子轩, 王琳, 程兴旺, 等. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为 [J]. 兵工学报, 2021, 42(4): 862–870. doi: 10.3969/j.issn.1000-1093.2021.04.020

    NING Z X, WANG L, CHENG X W, et al. Dynamic response behaviors of Ti-6321 titanium alloys with different microstructures under split Hopkinson pressure bar loading [J]. Acta Armamentarii, 2021, 42(4): 862–870. doi: 10.3969/j.issn.1000-1093.2021.04.020
    [18]
    靳丹, 程兴旺, 郑超, 等. 片层宽度对TC21钛合金动态压缩性能及其绝热剪切敏感性的影响规律 [J]. 稀有金属材料与工程, 2016, 45(11): 2953–2958.

    JIN D, CHENG X W, ZHENG C, et al. Effects of lamellar α thickness on dynamic mechanical properties and sensitivity to adiabatic shear banding of TC21 alloy [J]. Rare Metal Materials and Engineering, 2016, 45(11): 2953–2958.
    [19]
    徐雪峰, 王琳, 沙彦刚, 等. TC4 ELI钛合金动态压缩性能及绝热剪切敏感性的研究 [J]. 兵工学报, 2020, 41(2): 366–373. doi: 10.3969/j.issn.1000-1093.2020.02.019

    XU X F, WANG L, SHA Y G, et al. Research on dynamic mechanical properties of TC4 ELI titanium alloy and its sensitivity to adiabatic shear banding [J]. Acta Armamentarii, 2020, 41(2): 366–373. doi: 10.3969/j.issn.1000-1093.2020.02.019
    [20]
    冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的实验研究 [J]. 兵工学报, 2017, 38(9): 1723–1728. doi: 10.3969/j.issn.1000-1093.2017.09.008

    RAN C, CHEN P W, LI L, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates [J]. Acta Armamentarii, 2017, 38(9): 1723–1728. doi: 10.3969/j.issn.1000-1093.2017.09.008
    [21]
    BAI Y L, XUC Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
    [22]
    徐铁伟. 高强TB8钛合金相变行为与组织控制研究 [D]. 西安: 西北工业大学, 2016: 101−104.

    XU T W. Study on phase-transformation behaviors and microstructure control of the high-strength TB8 alloy [D]. Xi’an: Northwestern Polytechnical University, 2016: 101−104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(207) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return