Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
HAN Deng’an, XU Dan, YE Renchuan, REN Peng. Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044205. doi: 10.11858/gywlxb.20220526
Citation: HAN Deng’an, XU Dan, YE Renchuan, REN Peng. Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044205. doi: 10.11858/gywlxb.20220526

Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load

doi: 10.11858/gywlxb.20220526
  • Received Date: 06 Mar 2022
  • Rev Recd Date: 06 Apr 2022
  • Available Online: 16 Jul 2022
  • Issue Publish Date: 28 Jul 2022
  • In order to improve the impact resistance of fiber composite components under hail load, inspired by the unique double-helicoidal structure of coelacanth scales, a numerical model of the double-helicoidal bionic structure made of carbon fiber reinforced composite was established, and the effectiveness of the bionic structure model was verified. The damage characteristics of the bionic-structure and the orthogonal lamination structure under hail load were compared and analyzed, and the influences of the hail impact energy and the hail distribution on the dynamic response of the double-helicoidal bionic structure were studied. The results show that the damage degree of the double-helicoidal bionic structure under the action of hail is better than the orthogonal laminated structure of the same density. When the impact energy reaches 1149.3 J, the orthogonal laminated structure shows an obvious matrix fracture and a fiber breakage, while the double-helicoidal bionic structure only shows a superficial delamination in the impact area with a small fiber fracture. The mechanical response of the bionic structure under hail impact can be divided into three stages. As the impact energy increases, the impact area firstly shows a matrix stretching, and the area near the impact point is delaminated and bulged out-of-plane; then the delamination area expands to the surrounding area, and the displacement of the impact position reaches the maximum under the continuous load of hail; since then, the bionic structure rebounds until it is stable. Both the energy absorption ratio and the contact force of the double-helicoidal bionic structure increase linearly with the increase of the impact energy. Under the same mass hail load, the damage degree of the upper surface gradually decreases with the increase of hail distribution density, and the damage area on the lower surface gradually increases for the bionic structure. The research results lay a foundation for the lightweight design of the coelacanth scales-inspired bionic structure under hail load.

     

  • loading
  • [1]
    VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1–5. doi: 10.1016/S0924-0136(00)00411-8
    [2]
    VALLONS K, BEHAEGHE A, LOMOV S V, et al. Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 1019–1026. doi: 10.1016/j.compositesa.2010.04.008
    [3]
    DOLATI S H, REZAEEPAZHAND J, SHARIATI M. Numerical simulation of hail impact response of hybrid corrugated core sandwich panels [J]. Journal of Reinforced Plastics and Composites, 2019, 38(14): 643–657. doi: 10.1177/0731684419838332
    [4]
    莫袁鸣, 赵振华, 罗刚, 等. 复合材料层合板冰雹冲击损伤研究 [J]. 重庆理工大学学报(自然科学), 2020, 34(3): 112–121. doi: 10.3969/j.issn.1674-8425(z).2020.03.017

    MO Y M, ZHAO Z H, LUO G, et al. Investigation on damage of composite laminates subject to hail impact [J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(3): 112–121. doi: 10.3969/j.issn.1674-8425(z).2020.03.017
    [5]
    WANG B, XIONG J, WANG X J, et al. Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact [J]. Materials & Design, 2013, 50: 140–148. doi: 10.1016/j.matdes.2013.01.046
    [6]
    刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 451–456. doi: 10.11883/1001-1455(2014)04-0451-06

    LIU J G, LI Y L, SUO T, et al. Numerical simulation of high velocity impact of composite T-joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451–456. doi: 10.11883/1001-1455(2014)04-0451-06
    [7]
    张海广, 王瑜, 安连浩, 等. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟 [J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776

    ZHANG H G, WANG Y, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of branch staggered laminated biomimetic composites under impact loading [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
    [8]
    SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates [J]. Composites Science and Technology, 2016, 128: 222–232. doi: 10.1016/j.compscitech.2016.04.007
    [9]
    王瑜, 武晓东, 安连浩, 等. 仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟 [J]. 复合材料学报, 2022.

    WANG Y, WU X D, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of biomimetic spiral structured composite [J]. Acta Materiae Compositae Sinica, 2022.
    [10]
    田野, 罗荣超, 廖昌宇, 等. 仿生蛛网结构有机硅胶缓冲垫缓冲性能 [J]. 包装工程, 2022, 43(3): 155–160. doi: 10.19554/j.cnki.1001-3563.2022.03.019

    TIAN Y, LUO R C, LIAO C Y, et al. Cushioning performance of biomimetic cobweb silicone cushion [J]. Packaging Engineering, 2022, 43(3): 155–160. doi: 10.19554/j.cnki.1001-3563.2022.03.019
    [11]
    YIN S, YANG R H, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites [J]. Composites Science and Technology, 2021, 205: 108650. doi: 10.1016/j.compscitech.2021.108650
    [12]
    SHOKRIEH M M, REZAEI D. Analysis and optimization of a composite leaf spring [J]. Composite Structures, 2003, 60(3): 317–325. doi: 10.1016/S0263-8223(02)00349-5
    [13]
    HUANG H B, MA X, QIAO J W, et al. Numerical simulation of failure behaviors of CFRP laminates on hashin model coupled with cohesive elements [J]. IOP Conference Series: Materials Science and Engineering, 2018, 382(3): 032062. doi: 10.1088/1757-899X/382/3/032062
    [14]
    陈星. 基于ABAQUS的冰雹撞击有限元分析 [D]. 呼和浩特: 内蒙古工业大学, 2013: 37−47.

    CHEN X. Finite element analysis for hail impact dependent on ABAOUS [D]. Hohhot: Inner Mongolia University of Technology, 2013: 37−47.
    [15]
    RHYMER J D. Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice [D]. San Diego: University of California, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(253) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return