Citation: | GAO Feiyan, LIU Rui, CHEN Pengwan, LONG Yao, CHEN Jun. Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521 |
[1] |
CHEN P W, HUANG F L, DING Y S. Microstructure, deformation and failure of polymer bonded explosives [J]. Journal of Materials Science, 2007, 42(13): 5272–5280. doi: 10.1007/s10853-006-0387-y
|
[2] |
ZHAO P D, LU F Y, LIN Y L, et al. Technique for combined dynamic compression-shear testing of PBXs [J]. Experimental Mechanics, 2012, 52(2): 205–213. doi: 10.1007/s11340-011-9534-8
|
[3] |
ZHU W, XIAO J J, ZHU W H, et al. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1082–1088. doi: 10.1016/j.jhazmat.2008.09.021
|
[4] |
LONG Y, CHEN J. A molecular dynamics study of the early-time mechanical heating in shock-loaded octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine-based explosives [J]. Journal of Applied Physics, 2014, 116(3): 033516. doi: 10.1063/1.4890715
|
[5] |
AN Q, ZYBIN S V, GODDARD W A, et al. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials [J]. Physical Review B, 2011, 84(22): 220101. doi: 10.1103/PhysRevB.84.220101
|
[6] |
YEAGER J D, RAMOS K J, SINGH S, et al. Nanoindentation of explosive polymer composites to simulate deformation and failure [J]. Materials Science and Technology, 2012, 28(9/10): 1147–1155. doi: 10.1179/1743284712Y.0000000011
|
[7] |
RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458: 743–762. doi: 10.1098/rspa.2001.0894
|
[8] |
XIAO Y C, SUN Y, WANG Z J. Investigating the static and dynamic tensile mechanical behaviour of polymer-bonded explosives [J]. Strain, 2018, 54(2): e12262. doi: 10.1111/str.12262
|
[9] |
WANG X J, WU Y Q, HUANG F L. Numerical mesoscopic investigations of dynamic damage and failure mechanisms of polymer bonded explosives [J]. International Journal of Solids and Structures, 2017, 129: 28–39. doi: 10.1016/j.ijsolstr.2017.09.017
|
[10] |
DAI K D, LU B D, CHEN P W, et al. Modelling microstructural deformation and the failure process of plastic bonded explosives using the cohesive zone model [J]. Materials, 2019, 12(22): 3661. doi: 10.3390/ma12223661
|
[11] |
FU X L, FAN X Z, JU X H, et al. Molecular dynamic simulations on the interaction between an HTPE polymer and energetic plasticizers in a solid propellant [J]. RSC Advances, 2015, 5(65): 52844–52851. doi: 10.1039/C5RA05312A
|
[12] |
SHI Y B, GONG J, HU X Y, et al. Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture [J]. Journal of Molecular Modeling, 2020, 26(7): 176. doi: 10.1007/s00894-020-04426-0
|
[13] |
FU J B, WANG B G, CHEN Y F, et al. Computational analysis the relationships of energy and mechanical properties with sensitivity for FOX-7 based PBXs via MD simulation [J]. Royal Society Open Science, 2021, 8(2): 200345. doi: 10.1098/rsos.200345
|
[14] |
YU C, YANG L, CHEN H Y, et al. Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations [J]. Computational Materials Science, 2020, 172: 109287. doi: 10.1016/j.commatsci.2019.109287
|
[15] |
XIAO J J, HUANG H, LI J S, et al. A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB [J]. Journal of Molecular Structure: Theochem, 2008, 851(1): 242–248. doi: 10.1016/j.theochem.2007.11.021
|
[16] |
XIAO J J, HUANG H, LI J S, et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation [J]. Journal of Materials Science, 2008, 43(17): 5685–5691. doi: 10.1007/s10853-008-2704-0
|
[17] |
XIAO J J, FANG G Y, JI G F, et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives [J]. Chinese Science Bulletin, 2005, 50(1): 21–26. doi: 10.1360/982004-147
|
[18] |
WANG L Y, ZHONG K, MA J, et al. Learning the initial mechanical response of composite material: structure evolution and energy profile of a plastic bonded explosive under rapid loading [J]. Journal of Molecular Modeling, 2019, 25(2): 31. doi: 10.1007/s00894-018-3913-3
|
[19] |
LV L, YANG M L, LONG Y, et al. Molecular dynamics simulation of structural and mechanical features of a polymer-bonded explosive interface under tensile deformation [J]. Applied Surface Science, 2021, 557: 149823. doi: 10.1016/j.apsusc.2021.149823
|
[20] |
SMITH G D, BHARADWAJ R K. Quantum chemistry based force field for simulations of HMX [J]. The Journal of Physical Chemistry B, 1999, 103(18): 3570–3575. doi: 10.1021/jp984599p
|
[21] |
BEDROV D, AYYAGARI C, SMITH G D, et al. Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field [J]. Journal of Computer: Aided Materials Design, 2001, 8(2/3): 77–85. doi: 10.1023/A:1020046817543
|
[22] |
BEDROV D, BORODIN O, SMITH G D, et al. A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene as a function of pressure and temperature [J]. The Journal of Chemical Physics, 2009, 131(22): 224703. doi: 10.1063/1.3264972
|
[23] |
SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338–7364. doi: 10.1021/jp980939v
|
[24] |
BUNTE S W, SUN H. Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field [J]. The Journal of Physical Chemistry B, 2000, 104(11): 2477–2489. doi: 10.1021/jp991786u
|
[25] |
LONG Y, LIU Y G, NIE F D, et al. The force-field derivation and atomistic simulation of HMX-fluoropolymer mixture explosives [J]. Colloid and Polymer Science, 2012, 290(18): 1855–1866. doi: 10.1007/s00396-012-2705-z
|
[1] | SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790 |
[2] | CHEN Yinqi, WANG Hongbo. Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842 |
[3] | ZHAO Wendi, DUAN Defang, CUI Tian. New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727 |
[4] | CUI Yinan, LIU Zhanli, HU Jianqiao, LIU Fengxian, ZHUANG Zhuo. Advances and Application of Dislocation Dynamics in the Mechanics of Extreme Environment[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030101. doi: 10.11858/gywlxb.20200516 |
[5] | SONG Yunfei, ZHENG Zhaoyang, WU Honglin, ZHENG Xianxu, WU Qiang, YU Guoyang, YANG Yanqian. A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599 |
[6] | ZHENG Zhao-Yang, ZHAO Ji-Jun. Ab Initio Molecular Dynamics Simulation of Energetic Materials[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 81-94. doi: 10.11858/gywlxb.2015.02.001 |
[7] | SU Lei. Progress of Investigations on the Condensed Structures and Properties of Room Temperature Ionic Liquid under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 1-10. doi: 10.11858/gywlxb.2014.01.001 |
[8] | LI Zhi-Wu, XU Jin-Yu, DAI Shuang-Tian, BAI Er-Lei, GAO Zhi-Gang. Experimental Study on Concrete Exposed to High Temperature under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 417-422. doi: 10.11858/gywlxb.2013.03.016 |
[9] | WANG Li-Wen, PANG Bao-Jun, CHEN Yong, ZHANG Kai. Study on Dynamic Mechanical Behavior and Constitutive Model of Reactive Powder Concrete after Exposure in High Temperature[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 361-368. doi: 10.11858/gywlxb.2012.04.001 |
[10] | SU Tai-Chao, ZHU Hong-Yu, LI Hong-Tao, LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, JIA Xiao-Peng. Electrical Properties of Thermoelectric Material of PbTe1-xSex Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 247-250 . doi: 10.11858/gywlxb.2011.03.009 |
[11] | XIAO Da-Wu, LI Ying-Lei, HU Shi-Sheng. Constitutive Model of Pure Zirconium under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 46-50 . doi: 10.11858/gywlxb.2009.01.008 |
[12] | XU Song-Lin, YANG Shi-Qing, XU Wen-Tao, ZHANG Wei. Research on the Mechanical Performance of PTFE/Al Reactive Materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384-388 . doi: 10.11858/gywlxb.2009.05.010 |
[13] | WU Hui-Min, LU Fang-Yun, LU Li, WANG Zhi-Bing. Microstructure Fractural Characteristics of Energetic Materials under Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 213-218 . doi: 10.11858/gywlxb.2005.03.004 |
[14] | LIU Hong, WEI Dong-Qing, ZHAO Ji-Jun, GUO Yong-Xin, GONG Zi-Zheng. Molecular Dynamic Study of Liquid Nitromethane under High-Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 319-327 . doi: 10.11858/gywlxb.2004.04.006 |
[15] | CHEN Jin-Yang, ZHENG Hai-Fei, ZENG Yi-Shan, SUN Qiang. An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002 |
[16] | YANG Xiang-Dong, ZHANG Hong, HU Dong, JING Fu-Qian. Theoretical Studies of EOS and Phase Transitions of Carbon under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 250-253 . doi: 10.11858/gywlxb.1997.04.003 |
[17] | ZHANG Hong-Huang, LIANG Ji, WEI Bing-Qing, GAO Zhi-Dong, ZHANG Ji-Hong, LIU Li-Fang, ZHAO Gang. The Phase Transition of Fullerene Carbon under High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 1995, 9(4): 296-301 . doi: 10.11858/gywlxb.1995.04.009 |
[18] | CUI Qi-Liang, MENG Jin-Fang, ZOU Guang-Tian, ZHAO Yong-Nian, LI Dong-Mei. Pressure and Temperature-Induced Soft Mode Phase Transition in Bi1.8Nd0.2Ti4O11[J]. Chinese Journal of High Pressure Physics, 1993, 7(2): 110-114 . doi: 10.11858/gywlxb.1993.02.005 |
[19] | WANG Chun-Kui, LIU Xiao-Ping, ZHENG Rong. Dynamic Properties of LY-12 Aluminum AlloyIts Punching Shear Fracture Strength at High Temperatures[J]. Chinese Journal of High Pressure Physics, 1992, 6(2): 108-115 . doi: 10.11858/gywlxb.1992.02.004 |
[20] | HAN Cui-Ying. Properties of High-Tc Superconductors under High Pressure and Low Temperature[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 35-45 . doi: 10.11858/gywlxb.1991.01.006 |