Citation: | SUN Xiaoyu, LIANG Wentao, LI Xiangdong, GAO Chan, DAI Rucheng, WANG Zhongping, ZHANG Zengming. Advances of High-Temperature and High-Pressure Physical Properties and Experimental Technology on High-Energy Insensitive Explosive TATB[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030101. doi: 10.11858/gywlxb.20220520 |
[1] |
SHEN J P, DUAN X H, LUO Q P, et al. Preparation and characterization of a novel cocrystal explosive [J]. Crystal Growth & Design, 2011, 11(5): 1759–1765. doi: 10.1021/cg1017032
|
[2] |
焦越. 高能氮杂化合物结构与性质的理论研究 [D]. 南京: 南京理工大学, 2018.
JIAO Y. Theoretic studies of the structures and properties of energetic nitrogen-contained compounds [D]. Nanjing: Nanjing University of Science and Technology, 2018.
|
[3] |
BOLTON O, MATZGER A J. Improved stability and smart-material functionality realized in an energetic cocrystal [J]. Angewandte Chemie International Edition, 2011, 50(38): 8960–8963. doi: 10.1002/anie.201104164
|
[4] |
舒远杰, 武宗凯, 刘宁, 等. 晶形控制及形成共晶: 含能材料改性研究的重要途径 [J]. 火炸药学报, 2015, 38(5): 1–9. doi: 10.14077/j.issn.1007-7812.2015.05.001
SHU Y J, WU Z K, LIU N, et al. Crystal control and cocrystal formation: important route of modification research of energetic materials [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 1–9. doi: 10.14077/j.issn.1007-7812.2015.05.001
|
[5] |
BEDROV D, BORODIN O, SMITH G D, et al. A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene as a function of pressure and temperature [J]. The Journal of Chemical Physics, 2009, 131(22): 224703. doi: 10.1063/1.3264972
|
[6] |
FEDOROV I A, ZHURAVLEV Y N. Hydrostatic pressure effects on structural and electronic properties of TATB from first principles calculations [J]. Chemical Physics, 2014, 436/437: 1–7. doi: 10.1016/j.chemphys.2014.03.013
|
[7] |
朱磊. TATB及TATB类炸药分子的电子结构及性能研究 [D]. 武汉: 武汉理工大学, 2005.
ZHU L. Study on electronic structures and properties of explosive molecules of TATB series [D]. Wuhan: Wuhan University of Technology, 2005.
|
[8] |
WANG J, WANG Y Q, QIAO Z Q, et al. Self-assembly of TATB 3D architectures via micro-channel crystallization and a formation mechanism [J]. CrystEngComm, 2016, 18(11): 1953–1957. doi: 10.1039/C5CE02436F
|
[9] |
NANDI A K, KASAR S M, THANIGAIVELAN U, et al. Formation of the sensitive impurity 1, 3, 5-triamino-2-chloro-4, 6-dinitrobenzene in pilot plant TATB production [J]. Organic Process Research & Development, 2012, 16(12): 2036–2042. doi: 10.1021/op300213s
|
[10] |
高大元, 徐容, 董海山, 等. TATB、TCTNB和TCDNB的爆轰性能 [J]. 火炸药学报, 2005, 28(2): 68–71. doi: 10.3969/j.issn.1007-7812.2005.02.021
GAO D Y, XU R, DONG H S, et al. Detonation performance of TATB, TCTNB and TCDNB [J]. Chinese Journal of Explosives & Propellants, 2005, 28(2): 68–71. doi: 10.3969/j.issn.1007-7812.2005.02.021
|
[11] |
BADGUJAR D M, TALAWAR M B, ASTHANA S N, et al. Advances in science and technology of modern energetic materials: an overview [J]. Journal of Hazardous Materials, 2008, 151(2/3): 289–305. doi: 10.1016/j.jhazmat.2007.10.039
|
[12] |
黄亚峰, 王晓峰, 冯晓军, 等. 高温耐热炸药的研究现状与发展 [J]. 爆破器材, 2012, 41(6): 1–4. doi: 10.3969/j.issn.1001-8352.2012.06.001
HUANG Y F, WANG X F, FENG X J, et al. Preset research and perspective of the high-temperature heat-resistance explosive [J]. Explosive Materials, 2012, 41(6): 1–4. doi: 10.3969/j.issn.1001-8352.2012.06.001
|
[13] |
STEELE B A, CLARKE S M, KROONBLAWD M P, et al. Pressure-induced phase transition in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) [J]. Applied Physics Letters, 2019, 114(19): 191901. doi: 10.1063/1.5091947
|
[14] |
BODDU V M, VISWANATH D S, GHOSH T K, et al. 2, 4, 6-triamino-1, 3, 5-trinitrobenzene (TATB) and TATB-based formulations: a review [J]. Journal of Hazardous Materials, 2010, 181(1): 1–8. doi: 10.1016/j.jhazmat.2010.04.120
|
[15] |
MANAA M R, FRIED L E. Nearly equivalent inter- and intramolecular hydrogen bonding in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene at high pressure [J]. The Journal of Physical Chemistry C, 2012, 116(3): 2116–2122. doi: 10.1021/jp205920n
|
[16] |
KOHNO Y, MORI K, HIYOSHI R I, et al. Molecular dynamics and first-principles studies of structural change in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) in crystalline state under high pressure: comparison of hydrogen bond systems of TATB versus 1, 3-diamino-2, 4, 6-trinitrobenzene (DATB) [J]. Chemical Physics, 2016, 472: 163–172. doi: 10.1016/j.chemphys.2016.04.002
|
[17] |
DAVID STEPHEN A, SRINIVASAN P, KUMARADHAS P. Bond charge depletion, bond strength and the impact sensitivity of high energetic 1, 3, 5-triamino 2, 4, 6-trinitrobenzene (TATB) molecule: a theoretical charge density analysis [J]. Computational and Theoretical Chemistry, 2011, 967(2/3): 250–256. doi: 10.1016/j.comptc.2011.04.026
|
[18] |
LIU H, ZHAO J J, DU J G, et al. High-pressure behavior of TATB crystal by density functional theory [J]. Physics Letters A, 2007, 367(4/5): 383–388. doi: 10.1016/j.physleta.2007.03.048
|
[19] |
FAN H, LONG Y, DING L, et al. A theoretical study of elastic anisotropy and thermal conductivity for TATB under pressure [J]. Computational Materials Science, 2017, 131: 321–332. doi: 10.1016/j.commatsci.2017.01.020
|
[20] |
QIAN W, ZHANG C Y, XIONG Y, et al. Thermal expansion of explosive molecular crystals: anisotropy and molecular stacking [J]. Central European Journal of Energetic Materials, 2014, 11(1): 59–81.
|
[21] |
GUO F, ZHANG H, HU H Q, et al. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures [J]. Chinese Physics B, 2014, 23(4): 046501. doi: 10.1088/1674-1056/23/4/046501
|
[22] |
SU Y, FAN J Y, ZHENG Z Y, et al. Compression behavior and spectroscopic properties of insensitive explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene from dispersion-corrected density functional theory [J]. Chinese Physics B, 2018, 27(5): 056401. doi: 10.1088/1674-1056/27/5/056401
|
[23] |
GUMP J C. High-pressure and temperature investigations of energetic materials [J]. Journal of Physics: Conference Series, 2014, 500(5): 052014. doi: 10.1088/1742-6596/500/5/052014
|
[24] |
GAO C, ZHANG X Y, ZHANG C C, et al. Effect of pressure gradient and new phases for 1, 3, 5-trinitrohexahydro-s-triazine (RDX) under high pressures [J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14374–14383. doi: 10.1039/C8CP01192C
|
[25] |
MANAA M R, SCHMIDT R D, OVERTURF G E, et al. Towards unraveling the photochemistry of TATB [J]. Thermochimica Acta, 2002, 384(1/2): 85–90. doi: 10.1016/S0040-6031(01)00779-1
|
[26] |
DAVIDSON A J, DIAS R P, DATTELBAUM D M, et al. “Stubborn” triaminotrinitrobenzene: unusually high chemical stability of a molecular solid to 150 GPa [J]. The Journal of Chemical Physics, 2011, 135(17): 174507. doi: 10.1063/1.3658385
|
[27] |
STEVENS L L, VELISAVLJEVIC N, HOOKS D E, et al. Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder X-ray diffraction [J]. Propellants, Explosives, Pyrotechnics, 2008, 33(4): 286–295. doi: 10.1002/prep.200700270
|
[28] |
TROTT W M, RENLUND A M. Single-pulse Raman scattering study of triaminotrinitrobenzene under shock compression [J]. The Journal of Physical Chemistry, 1988, 92(21): 5921–5925. doi: 10.1021/j100332a015
|
[29] |
SATIJA S K, SWANSON B, ECKERT J, et al. High-pressure Raman scattering and inelastic neutron scattering studies of triaminotrinitrobenzene [J]. The Journal of Physical Chemistry, 1991, 95(24): 10103–10109. doi: 10.1021/j100177a088
|
[30] |
PRAVICA M, YULGA B, LIU Z X, et al. Infrared study of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure [J]. Physical Review B, 2007, 76(6): 064102. doi: 10.1103/PhysRevB.76.064102
|
[31] |
PRAVICA M, YULGA B, TKACHEV S, et al. High-pressure far- and mid-infrared study of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene [J]. The Journal of Physical Chemistry A, 2009, 113(32): 9133–9137. doi: 10.1021/jp903584x
|
[32] |
KAKAR S, NELSON A J, TREUSCH R, et al. Electronic structure of the energetic material 1, 3, 5-triamino-2, 4, 6-trinitrobenzene [J]. Physical Review B, 2000, 62(23): 15666–15672. doi: 10.1103/PhysRevB.62.15666
|
[33] |
OJEDA O U, ÇAĞIN T. Hydrogen bonding and molecular rearrangement in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under compression [J]. The Journal of Physical Chemistry B, 2011, 115(42): 12085–12093. doi: 10.1021/jp2007649
|
[34] |
LIU Y J, ZENG Q X, ZOU B, et al. Piezochromic luminescence of donor-acceptor cocrystals: distinct responses to anisotropic grinding and isotropic compression [J]. Angewandte Chemie International Edition, 2018, 57(48): 15670–15674. doi: 10.1002/anie.201810149
|
[35] |
XU X J, ZHU W H, XIAO H M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal [J]. The Journal of Physical Chemistry B, 2007, 111(8): 2090–2097. doi: 10.1021/jp066833e
|
[36] |
SUN X Y, WANG X Q, LIANG W T, et al. Pressure-induced conformer modifications and electronic structural changes in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) up to 20 GPa [J]. The Journal of Physical Chemistry C, 2018, 122(28): 15861–15867. doi: 10.1021/acs.jpcc.8b03323
|
[37] |
高大元, 徐容, 董海山, 等. TATB及其杂质的绝热分解研究 [J]. 爆炸与冲击, 2004, 24(1): 69–74. doi: 10.3321/j.issn:1001-1455.2004.01.012
GAO D Y, XU R, DONG H S, et al. Study on thermal decomposition of TATB and its impurity by accelerating rate calorimeter [J]. Explosion and Shock Waves, 2004, 24(1): 69–74. doi: 10.3321/j.issn:1001-1455.2004.01.012
|
[38] |
王君, 郭峰, 程新路, 等. TATB高温高压下初始分解反应的分子动力学模拟 [J]. 四川大学学报 (自然科学版), 2013, 50(3): 580–584. doi: 10.3969/j.issn.0490-6756.2013.03.030
WANG J, GUO F, CHENG X L, et al. Reactive molecular dynamics simulations of initial decomposition of TATB under high temperature and high pressure [J]. Journal of Sichuan University (Natural Science Edition), 2013, 50(3): 580–584. doi: 10.3969/j.issn.0490-6756.2013.03.030
|
[39] |
WU Q, CHEN H, XIONG G L, et al. Decomposition of a 1, 3, 5-triamino-2, 4, 6-trinitrobenzene crystal at decomposition temperature coupled with different pressures: an ab initio molecular dynamics study [J]. The Journal of Physical Chemistry C, 2015, 119(29): 16500–16506. doi: 10.1021/acs.jpcc.5b05041
|
[40] |
WANG J K, GAO C, XU Z L, et al. Pressure effects on the thermal decomposition of the LLM-105 crystal [J]. Physical Chemistry Chemical Physics, 2022, 24(4): 2396–2402. doi: 10.1039/D1CP04076F
|