Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518
Citation: HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518

Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading

doi: 10.11858/gywlxb.20220518
  • Received Date: 22 Feb 2022
  • Rev Recd Date: 26 Mar 2022
  • Available Online: 19 Jul 2022
  • Issue Publish Date: 28 Jul 2022
  • Thin-walled sandwich structures are commonly used in protective structures due to its lightweight performance and excellent energy absorption. In this investigation, axial deformation behaviors as well as the energy absorption are studied for the sinusoidal corrugated cylinder because of its easier manufacturing process and wider engineering application. Based on the quasi-static axial compression experiment, the corresponding numerical simulation is carried out. The experimental result agrees with the numerical one. Hence, the influence of the core thickness A and the number of sine wave cycles N is analyzed on the collapse mode and energy absorption. The results show that the proper A and N not only effectively improves the specific energy absorption but also leads to desired deformation mode. In addition, compared with other parameters of A and N, in case of A=3 mm and N=12, the sandwich cylinder under quasi-static compression exhibits axisymmetric deformation, which shows the best energy absorption property. A=7 mm and N=12 with non-axisymmetric deformation mode has the best specific energy absorption and highest average compression efficiency under impact loading.

     

  • loading
  • [1]
    GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. doi: 10.1016/S0020-7403(01)00031-5
    [2]
    朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.

    ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96.
    [3]
    JANDAGHI SHAHI V, MARZBANRAD J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes [J]. Thin-Walled Structures, 2012, 60: 24–37. doi: 10.1016/j.tws.2012.05.015
    [4]
    SADIGHI A, EYVAZIAN A, ASGARI M, et al. A novel axially half corrugated thin-walled tube for energy absorption under axial loading [J]. Thin-Walled Structures, 2019, 145: 106418. doi: 10.1016/j.tws.2019.106418
    [5]
    YAO S G, ZHU H F, LIU M Y, et al. Energy absorption of origami tubes with polygonal cross-sections [J]. Thin-Walled Structures, 2020, 157: 107013. doi: 10.1016/j.tws.2020.107013
    [6]
    ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading [J]. International Journal of Impact Engineering, 2020, 141: 103509. doi: 10.1016/j.ijimpeng.2020.103509
    [7]
    HOU Y B, ZHANG Y, YAN X L, et al. Crushing behaviors of the thin-walled sandwich column under axial load [J]. Thin-Walled Structures, 2021, 159: 107229. doi: 10.1016/j.tws.2020.107229
    [8]
    WU S Y, SUN G Y, WU X, et al. Crashworthiness analysis and optimization of fourier varying section tubes [J]. International Journal of Non-Linear Mechanics, 2017, 92: 41–58. doi: 10.1016/j.ijnonlinmec.2017.03.001
    [9]
    FU J, LIU Q, LIUFU K M, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
    [10]
    侯淑娟. 薄壁构件的抗撞性优化设计 [D]. 长沙: 湖南大学, 2007: 44−57.

    HOU S J. Optimization design of the thin-walled components with crashworthiness criterion [D]. Changsha: Hunan University, 2007: 44−57.
    [11]
    闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

    YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
    [12]
    白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究 [J]. 振动与冲击, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019

    BAI J P, ZHANG X C, SHEN Z F, et al. Dynamic crushing behaviors of multi-cell thin-walled structures under out-of-plane impact [J]. Journal of Vibration and Shock, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019
    [13]
    MOHAMED A S, LABAN O, TARLOCHAN F, et al. Experimental analysis of additively manufactured thin-walled heat-treated circular tubes with slits using AlSi10Mg alloy by quasi-static axial crushing test [J]. Thin-Walled Structures, 2019, 138: 404–414. doi: 10.1016/j.tws.2019.02.022
    [14]
    杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展 [J]. 力学季刊, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001

    YANG F, WANG P, FAN H L, et al. Review of theoretical models on the energy absorption and deformation modes of the thin-walled tubular structures [J]. Chinese Quarterly of Mechanics, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(314) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return