Citation: | ZHAO Wei, CHEN Li, ZHANG Qingming, LONG Renrong, XUE Yijiang, LIU Wenjin, SUN Qiaoxi. Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515 |
[1] |
闵桂荣, 肖名鑫. 防止微流星击穿航天器舱壁的可靠性设计 [J]. 中国空间科学技术, 1986(6): 45–51.
MIN G R, XIAO M X. The reliability design to prevent meteors from penetrating spacecraft bulkhead [J]. Chinese Space Science and Technology, 1986(6): 45–51.
|
[2] |
姜东升, 郑世贵, 马宁, 等. 空间碎片和微流星对卫星太阳翼的撞击损伤及防护研究 [J]. 航天器工程, 2017, 26(2): 114–120. doi: 10.3969/j.issn.1673-8748.2017.02.016
JIANG D S, ZHENG S G, MA N, et al. Study of space debris and meteoroid impact effects on spacecraft solar array [J]. Spacecraft Engineering, 2017, 26(2): 114–120. doi: 10.3969/j.issn.1673-8748.2017.02.016
|
[3] |
李明, 龚自正, 刘国青. 空间碎片监测移除前沿技术与系统发展 [J]. 科学通报, 2018, 63(25): 2570–2591. doi: 10.1360/N972017-00880
LI M, GONG Z Z, LIU G Q. Frontier technology and system development of space debris surveillance and active removal [J]. Chinese Science Bulletin, 2018, 63(25): 2570–2591. doi: 10.1360/N972017-00880
|
[4] |
MARCHI S, DURD D D, POLANSKEY C A, et al. Hypervelocity impact experiments in iron-nickel ingots and iron meteorites: implications for the NASA psyche mission [J]. Journal of Geophysical Research: Planets, 2020, 125(2): e2019JE005927.
|
[5] |
刘先应, 盖芳芳, 李志强, 等. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究 [J]. 高压物理学报, 2016, 30(3): 249–257. doi: 10.11858/gywlxb.2016.03.011
LIU X Y, GAI F F, LI Z Q, et al. Characteristic parameters of debris cloud produced by hypervelocity impact of conical projectiles on spacecraft shield [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 249–257. doi: 10.11858/gywlxb.2016.03.011
|
[6] |
廖高健, 陈勇, 刘西, 等. 多孔火山岩超高速撞击蜂窝夹层板试验研究 [J]. 振动与冲击, 2018, 37(24): 1–6.
LIAO G J, CHEN Y, LIU X, et al. An experimental investigation of porous volcano rock hypervelocity impact on honeycomb sandwich panels [J]. Journal of Vibration and Shock, 2018, 37(24): 1–6.
|
[7] |
李斌. 轻质脆性弹丸作用下的防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.
LI B. The research on characteristics of shield structure under light brittle projectile hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2010.
|
[8] |
朱凼凼. 微流星体高速撞击航天器防护结构地面模拟实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.
ZHU D D. Research on ground simulation experiment of micrometeoroid high-speed impaction on spacecraft shield [D]. Harbin: Harbin Institute of Technology, 2012.
|
[9] |
PONIAEV S A, KURAKIN R O, SEDOV A I, et al. Hypervelocity impact of mm-size plastic projectile on thin aluminum plate [J]. Acta Astronautica, 2017, 135: 26–33. doi: 10.1016/j.actaastro.2016.11.011
|
[10] |
单立, 郑世贵, 闫军. 冰粒超高速撞击蜂窝板的数值模拟研究 [J]. 实验流体力学, 2014, 28(3): 98−103.
SHAN L, ZHENG S G, YAN J. Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 98−103.
|
[11] |
YUAN Q Z, ZHAO Y P. Hypervelocity impact of the icy droplet on al shell at nanoscale: a molecular dynamics probe [J]. Journal of Ningbo University (NSEE), 2012, 25(1): 94–97.
|
[12] |
王俊儒. 冰弹撞击CFRP复合材料的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2020.
WANG J R. Study on the damage characteristics of CFRP composites impacted by ice projectile [D]. Shenyang: Shenyang Ligong University, 2020.
|
[13] |
谭晓军, 冯晓伟, 胡艳辉, 等. 层状结构冰球的高速撞击特性实验 [J]. 爆炸与冲击, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
TAN X J, FENG X W, HU Y H, et al. Experimental investigation on characteristics of layered ice spheres under high-velocity impact [J]. Explosion and Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
|
[14] |
陈海波. 微流星体模拟材料超高速撞击航天器结构损伤特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.
CHEN H B. Damage characteristics of micro-meteoroid imitation matrial hypervelocity impacting on the spacecraft [D]. Harbin: Harbin Institute of Technology, 2011.
|
[15] |
PEREIRA J M, PADULA S A, REVILOCK D M, et al. Forces generated by high velocity impact of ice on a rigid structure: TM-2006-214263 [R]. Cleveland: NASA, 2006.
|
[16] |
TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. doi: 10.1016/j.ijimpeng.2013.01.013
|
[17] |
BOTTKE W F, WALKER R J, DAY J, et al. The delivery of water to the lunar mantle by late planetesimal accretion (invited) [C]//AGU Fall Meeting Abstracts. Washington: AGU, 2010.
|
[18] |
DALY R T, SCHULTZ P H. The delivery of water by impacts from planetary accretion to present [J]. Science Advances, 2018, 4(4): eaar2632. doi: 10.1126/sciadv.aar2632
|
[19] |
马文来, 张伟, 管公顺, 等. 椭球弹丸超高速撞击防护屏碎片云数值模拟 [J]. 材料科学与工艺, 2005, 13(3): 294–298. doi: 10.3969/j.issn.1005-0299.2005.03.021
MA W L, ZHANG W, GUAN G S, et al. Numerical simulation of debris cloud produced by ellipsoidal projectile hypervelocity impact on bumper [J]. Materials Science and Technology, 2005, 13(3): 294–298. doi: 10.3969/j.issn.1005-0299.2005.03.021
|
[20] |
郑伟, 庞宝君, 彭科科, 等. 超高速正撞击溅射物实验与仿真研究 [J]. 高压物理学报, 2012, 26(6): 621–626. doi: 10.11858/gywlxb.2012.06.004
ZHENG W, PANG B J, PENG K K, et al. Hypervelocity impact experiment and simulation for ejecta [J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 621–626. doi: 10.11858/gywlxb.2012.06.004
|
[21] |
HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056
|
[22] |
陈莹, 陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展 [J]. 爆炸与冲击, 2021, 41(2): 30–56.
CHEN Y, CHEN X W. A review on the improved Whipple shield and related numerical simulations [J]. Explosion and Shock Waves, 2021, 41(2): 30–56.
|
[23] |
谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005.
TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005.
|
[24] |
管公顺. 航天器空间碎片防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006.
GUAN G S. Hypervelocity impact characteristic investigation of spacecraft space debris shield configuration [D]. Harbin: Harbin Institute of Technology, 2006.
|
[25] |
武强, 张庆明, 龙仁荣, 等. 含能材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. doi: 10.3969/j.issn.1000-1093.2017.11.007
WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. doi: 10.3969/j.issn.1000-1093.2017.11.007
|
[26] |
才源, 庞宝君, 迟润强, 等. 高压气体对靶板穿孔及其碎片云运动和致损效应影响研究 [J]. 振动与冲击, 2019, 38(19): 31–37.
CAI Y, PANG B J, CHI R Q, et al. Influences of high pressure gas on target perforation and its debris cloud motion and damage effect [J]. Journal of Vibration and Shock, 2019, 38(19): 31–37.
|