Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
ZHAO Wei, CHEN Li, ZHANG Qingming, LONG Renrong, XUE Yijiang, LIU Wenjin, SUN Qiaoxi. Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515
Citation: ZHAO Wei, CHEN Li, ZHANG Qingming, LONG Renrong, XUE Yijiang, LIU Wenjin, SUN Qiaoxi. Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044103. doi: 10.11858/gywlxb.20220515

Damage Characteristics of Whipple Protective Structure Impacted by Water Droplets at Hypervelocity

doi: 10.11858/gywlxb.20220515
  • Received Date: 17 Feb 2022
  • Rev Recd Date: 02 Mar 2022
  • Accepted Date: 02 Mar 2022
  • Available Online: 21 Jul 2022
  • Issue Publish Date: 28 Jul 2022
  • In this paper, an experimental study on spherical water droplets with diameters of 3.7 and 6.4 mm at hypervelocity impacting typical Whipple protection structure (consisting of a buffer plate and a effect plate) was carried out at room temperature, and the damage characteristics of the double-layer aluminum plate created by different diameter spherical water droplet projectile were obtained. The finite element method-smoothed particle hydrodynamics (FEM-SPH) adaptive method in LS-DYNA software was used to study the damage characteristics of the Whipple protective structure impacted by water droplets with diameters varing in the range of 3−7 mm at different velocities. The influences of water droplet diameter, impact velocity, target plate thickness and other factors on the damage charateristics were analyzed. An empirical formula of dimensionless perforation diameter of water droplet impacting aluminum plate was obtained at hypervelocity in the range of 2−8 km/s. The minimum velocities for different water droplet diameters varing in the range of 3−7 mm required for the Whipple protection structure was obtained.

     

  • loading
  • [1]
    闵桂荣, 肖名鑫. 防止微流星击穿航天器舱壁的可靠性设计 [J]. 中国空间科学技术, 1986(6): 45–51.

    MIN G R, XIAO M X. The reliability design to prevent meteors from penetrating spacecraft bulkhead [J]. Chinese Space Science and Technology, 1986(6): 45–51.
    [2]
    姜东升, 郑世贵, 马宁, 等. 空间碎片和微流星对卫星太阳翼的撞击损伤及防护研究 [J]. 航天器工程, 2017, 26(2): 114–120. doi: 10.3969/j.issn.1673-8748.2017.02.016

    JIANG D S, ZHENG S G, MA N, et al. Study of space debris and meteoroid impact effects on spacecraft solar array [J]. Spacecraft Engineering, 2017, 26(2): 114–120. doi: 10.3969/j.issn.1673-8748.2017.02.016
    [3]
    李明, 龚自正, 刘国青. 空间碎片监测移除前沿技术与系统发展 [J]. 科学通报, 2018, 63(25): 2570–2591. doi: 10.1360/N972017-00880

    LI M, GONG Z Z, LIU G Q. Frontier technology and system development of space debris surveillance and active removal [J]. Chinese Science Bulletin, 2018, 63(25): 2570–2591. doi: 10.1360/N972017-00880
    [4]
    MARCHI S, DURD D D, POLANSKEY C A, et al. Hypervelocity impact experiments in iron-nickel ingots and iron meteorites: implications for the NASA psyche mission [J]. Journal of Geophysical Research: Planets, 2020, 125(2): e2019JE005927.
    [5]
    刘先应, 盖芳芳, 李志强, 等. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究 [J]. 高压物理学报, 2016, 30(3): 249–257. doi: 10.11858/gywlxb.2016.03.011

    LIU X Y, GAI F F, LI Z Q, et al. Characteristic parameters of debris cloud produced by hypervelocity impact of conical projectiles on spacecraft shield [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 249–257. doi: 10.11858/gywlxb.2016.03.011
    [6]
    廖高健, 陈勇, 刘西, 等. 多孔火山岩超高速撞击蜂窝夹层板试验研究 [J]. 振动与冲击, 2018, 37(24): 1–6.

    LIAO G J, CHEN Y, LIU X, et al. An experimental investigation of porous volcano rock hypervelocity impact on honeycomb sandwich panels [J]. Journal of Vibration and Shock, 2018, 37(24): 1–6.
    [7]
    李斌. 轻质脆性弹丸作用下的防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LI B. The research on characteristics of shield structure under light brittle projectile hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2010.
    [8]
    朱凼凼. 微流星体高速撞击航天器防护结构地面模拟实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.

    ZHU D D. Research on ground simulation experiment of micrometeoroid high-speed impaction on spacecraft shield [D]. Harbin: Harbin Institute of Technology, 2012.
    [9]
    PONIAEV S A, KURAKIN R O, SEDOV A I, et al. Hypervelocity impact of mm-size plastic projectile on thin aluminum plate [J]. Acta Astronautica, 2017, 135: 26–33. doi: 10.1016/j.actaastro.2016.11.011
    [10]
    单立, 郑世贵, 闫军. 冰粒超高速撞击蜂窝板的数值模拟研究 [J]. 实验流体力学, 2014, 28(3): 98−103.

    SHAN L, ZHENG S G, YAN J. Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 98−103.
    [11]
    YUAN Q Z, ZHAO Y P. Hypervelocity impact of the icy droplet on al shell at nanoscale: a molecular dynamics probe [J]. Journal of Ningbo University (NSEE), 2012, 25(1): 94–97.
    [12]
    王俊儒. 冰弹撞击CFRP复合材料的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2020.

    WANG J R. Study on the damage characteristics of CFRP composites impacted by ice projectile [D]. Shenyang: Shenyang Ligong University, 2020.
    [13]
    谭晓军, 冯晓伟, 胡艳辉, 等. 层状结构冰球的高速撞击特性实验 [J]. 爆炸与冲击, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047

    TAN X J, FENG X W, HU Y H, et al. Experimental investigation on characteristics of layered ice spheres under high-velocity impact [J]. Explosion and Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047
    [14]
    陈海波. 微流星体模拟材料超高速撞击航天器结构损伤特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

    CHEN H B. Damage characteristics of micro-meteoroid imitation matrial hypervelocity impacting on the spacecraft [D]. Harbin: Harbin Institute of Technology, 2011.
    [15]
    PEREIRA J M, PADULA S A, REVILOCK D M, et al. Forces generated by high velocity impact of ice on a rigid structure: TM-2006-214263 [R]. Cleveland: NASA, 2006.
    [16]
    TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. doi: 10.1016/j.ijimpeng.2013.01.013
    [17]
    BOTTKE W F, WALKER R J, DAY J, et al. The delivery of water to the lunar mantle by late planetesimal accretion (invited) [C]//AGU Fall Meeting Abstracts. Washington: AGU, 2010.
    [18]
    DALY R T, SCHULTZ P H. The delivery of water by impacts from planetary accretion to present [J]. Science Advances, 2018, 4(4): eaar2632. doi: 10.1126/sciadv.aar2632
    [19]
    马文来, 张伟, 管公顺, 等. 椭球弹丸超高速撞击防护屏碎片云数值模拟 [J]. 材料科学与工艺, 2005, 13(3): 294–298. doi: 10.3969/j.issn.1005-0299.2005.03.021

    MA W L, ZHANG W, GUAN G S, et al. Numerical simulation of debris cloud produced by ellipsoidal projectile hypervelocity impact on bumper [J]. Materials Science and Technology, 2005, 13(3): 294–298. doi: 10.3969/j.issn.1005-0299.2005.03.021
    [20]
    郑伟, 庞宝君, 彭科科, 等. 超高速正撞击溅射物实验与仿真研究 [J]. 高压物理学报, 2012, 26(6): 621–626. doi: 10.11858/gywlxb.2012.06.004

    ZHENG W, PANG B J, PENG K K, et al. Hypervelocity impact experiment and simulation for ejecta [J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 621–626. doi: 10.11858/gywlxb.2012.06.004
    [21]
    HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056
    [22]
    陈莹, 陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展 [J]. 爆炸与冲击, 2021, 41(2): 30–56.

    CHEN Y, CHEN X W. A review on the improved Whipple shield and related numerical simulations [J]. Explosion and Shock Waves, 2021, 41(2): 30–56.
    [23]
    谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005.

    TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005.
    [24]
    管公顺. 航天器空间碎片防护结构超高速撞击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006.

    GUAN G S. Hypervelocity impact characteristic investigation of spacecraft space debris shield configuration [D]. Harbin: Harbin Institute of Technology, 2006.
    [25]
    武强, 张庆明, 龙仁荣, 等. 含能材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. doi: 10.3969/j.issn.1000-1093.2017.11.007

    WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. doi: 10.3969/j.issn.1000-1093.2017.11.007
    [26]
    才源, 庞宝君, 迟润强, 等. 高压气体对靶板穿孔及其碎片云运动和致损效应影响研究 [J]. 振动与冲击, 2019, 38(19): 31–37.

    CAI Y, PANG B J, CHI R Q, et al. Influences of high pressure gas on target perforation and its debris cloud motion and damage effect [J]. Journal of Vibration and Shock, 2019, 38(19): 31–37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(267) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return