Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
Citation: LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514

First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure

doi: 10.11858/gywlxb.20220514
  • Received Date: 17 Feb 2022
  • Rev Recd Date: 06 Mar 2022
  • Accepted Date: 06 Mar 2022
  • Available Online: 22 Jun 2022
  • Issue Publish Date: 28 Jul 2022
  • Geometric structure, electronic structure and optical properties of nitrogen-rich energetic materials (bis 3, 4, 5-triamino-1, 2, 4-triazole)-5, 5′-azotetrazole (G2ZT) at high pressures are investigated using first-principles based on density functional theory. The calculated results obtained by using vdW-DF2 and PBE-D2 methods show that the crystal structure data fit well with the experimental results, and the error rates are all within 3%. Hirshfeld surface analyses indicate that interactions of the inter-molecular hydrogen bond are weaken with the increasing pressure. G2ZT crystal possesses a band gap of 2.03 eV at zero pressure, and it is a p-type semiconductor. As the pressure increases, the band gap becomes narrower and the absorption coefficient can approach 3.0×106 cm−1. These results provide a theoretical reference for further analysis of G2ZT crystal’s characteristics under high pressure.

     

  • loading
  • [1]
    KLAPÖTKE T M, SABATÉ C M. Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds [J]. Chemistry of Materials, 2008, 20(11): 3629–3637. doi: 10.1021/cm703657k
    [2]
    KLAPÖTKE T M, SABATÉ C M. 5, 5′-Hydrazinebistetrazole: an oxidation-stable nitrogen-rich compound and starting material for the synthesis of 5, 5′-Azobistetrazolates [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2007, 633(15): 2671–2677.
    [3]
    KARAGHIOSOFF K, KLAPÖTKE T M, SABATÉ C M. Nitrogen-rich compounds in pyrotechnics: alkaline earth metal salts of 5, 5′-hydrazine-1, 2-diylbis (1H-tetrazole) [J]. European Journal of Inorganic Chemistry, 2009(2): 238–250. doi: 10.1002/ejic.200800939
    [4]
    EBESPÄCHER M, KLAPÖTKE T M, SABATÉ C M. Nitrogen-rich alkali metal 5, 5′-hydrazinebistetrazolate salts: environmentally friendly compounds in pyrotechnic mixtures [J]. New Journal of Chemistry, 2009, 33(3): 517–527. doi: 10.1039/B818927G
    [5]
    DE LUCIA F C JR, GOTTFRIED J L. Characterization of a series of nitrogen-rich molecules using laser induced breakdown spectroscopy [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(3): 268–277. doi: 10.1002/prep.201000009
    [6]
    DREGER Z A, STASH A I, YU Z G, et al. High-pressure structural response of an insensitive energetic crystal: dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) [J]. The Journal of Physical Chemistry C, 2017, 121(10): 5761–5767. doi: 10.1021/acs.jpcc.7b00867
    [7]
    FANG X, STONE M, STENNETT C. Pulsed laser irradiation of a nanoparticles sensitized RDX crystal [J]. Combustion and Flame, 2020, 214: 387–393. doi: 10.1016/j.combustflame.2020.01.009
    [8]
    ISBELL R A, BREWSTER M Q. Optical properties of energetic materials: RDX, HMX, AP, NC/NG, and HTPB [J]. Propellants, Explosives, Pyrotechnics, 1998, 23(4): 218–224. doi: 10.1002/(SICI)1521-4087(199808)23:4<218::AID-PREP218>3.0.CO;2-A
    [9]
    ORDEJÓN P, ARTACHO E, SOLER J M. Self-consistent order-N density-functional calculations for very large systems [J]. Physical Review B, 1996, 53(16): R10441–R10444. doi: 10.1103/PhysRevB.53.R10441
    [10]
    SÁNCHEZ-PORTAL D, ORDEJÓN P, ARTACHO E, et al. Density-functional method for very large systems with LCAO basis sets [J]. International Journal of Quantum Chemistry, 1997, 65(5): 453–461. doi: 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
    [11]
    SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2745–2779. doi: 10.1088/0953-8984/14/11/302
    [12]
    DION M, RYDBERG H, SCHRÖDER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
    [13]
    HAMADA I. Van der Waals density functional made accurate [J]. Physical Review B, 2014, 89(12): 121103. doi: 10.1103/PhysRevB.89.121103
    [14]
    GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry, 2006, 27(15): 1787–1799. doi: 10.1002/jcc.20495
    [15]
    GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory [J]. Journal of Computational Chemistry, 2011, 32(7): 1456–1465. doi: 10.1002/jcc.21759
    [16]
    TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations [J]. Physical Review B, 1991, 43(3): 1993–2006. doi: 10.1103/PhysRevB.43.1993
    [17]
    SANKEY O F, NIKLEWSKI D J. Ab initio multicenter tight-binding model for molecular dynamics simulations and other applications in covalent systems [J]. Physical Review B, 1989, 40(6): 3979–3995. doi: 10.1103/PhysRevB.40.3979
    [18]
    JUNQUERA J, PAZ Ó, SÁNCHEZ-PORTAL D, et al. Numerical atomic orbitals for linear-scaling calculations [J]. Physical Review B, 2001, 64(23): 235111. doi: 10.1103/PhysRevB.64.235111
    [19]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [20]
    TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential [J]. Physical Review Letters, 2009, 102(22): 226401. doi: 10.1103/PhysRevLett.102.226401
    [21]
    AMBROSCH-DRAXL C, SOFO J O. Linear optical properties of solids within the full-potential linearized augmented planewave method [J]. Computer Physics Communications, 2006, 175(1): 1–14. doi: 10.1016/j.cpc.2006.03.005
    [22]
    TOLL J S. Causality and the dispersion relation: logical foundations [J]. Physical Review, 1956, 104(6): 1760–1770. doi: 10.1103/PhysRev.104.1760
    [23]
    RIVAS-SILVA J F, BLAS M A, HOAT D M. Theoretical study of electronic and optical properties of antiferromagnetic β-MnS using the modified becke johnson (mBJ) potential [J]. Journal of Physics and Chemistry of Solids, 2017, 128: 310–315.
    [24]
    BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
    [25]
    VINET P, FERRANTE J, SMITH J R, et al. A universal equation of state for solids [J]. Journal of Physics C: Solid State Physics, 1986, 19(20): L467–L473. doi: 10.1088/0022-3719/19/20/001
    [26]
    MCKINNON J J, JAYATILAKA D, SPACKMAN M A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces [J]. Chemistry Communications, 2007(37): 3814–3816. doi: 10.1039/b704980c
    [27]
    SPACKMAN M A, JAYATILAKA D. Hirshfeld surface analysis [J]. CrystEngComm, 2009, 11(1): 19–32. doi: 10.1039/B818330A
    [28]
    SPACKMAN P R, TURNER M J, MCKINNON J J, et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals [J]. Journal of Applied Crystallography, 2021, 54(3): 1006–1011. doi: 10.1107/S1600576721002910
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(340) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return