Citation: | LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514 |
[1] |
KLAPÖTKE T M, SABATÉ C M. Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds [J]. Chemistry of Materials, 2008, 20(11): 3629–3637. doi: 10.1021/cm703657k
|
[2] |
KLAPÖTKE T M, SABATÉ C M. 5, 5′-Hydrazinebistetrazole: an oxidation-stable nitrogen-rich compound and starting material for the synthesis of 5, 5′-Azobistetrazolates [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2007, 633(15): 2671–2677.
|
[3] |
KARAGHIOSOFF K, KLAPÖTKE T M, SABATÉ C M. Nitrogen-rich compounds in pyrotechnics: alkaline earth metal salts of 5, 5′-hydrazine-1, 2-diylbis (1H-tetrazole) [J]. European Journal of Inorganic Chemistry, 2009(2): 238–250. doi: 10.1002/ejic.200800939
|
[4] |
EBESPÄCHER M, KLAPÖTKE T M, SABATÉ C M. Nitrogen-rich alkali metal 5, 5′-hydrazinebistetrazolate salts: environmentally friendly compounds in pyrotechnic mixtures [J]. New Journal of Chemistry, 2009, 33(3): 517–527. doi: 10.1039/B818927G
|
[5] |
DE LUCIA F C JR, GOTTFRIED J L. Characterization of a series of nitrogen-rich molecules using laser induced breakdown spectroscopy [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(3): 268–277. doi: 10.1002/prep.201000009
|
[6] |
DREGER Z A, STASH A I, YU Z G, et al. High-pressure structural response of an insensitive energetic crystal: dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) [J]. The Journal of Physical Chemistry C, 2017, 121(10): 5761–5767. doi: 10.1021/acs.jpcc.7b00867
|
[7] |
FANG X, STONE M, STENNETT C. Pulsed laser irradiation of a nanoparticles sensitized RDX crystal [J]. Combustion and Flame, 2020, 214: 387–393. doi: 10.1016/j.combustflame.2020.01.009
|
[8] |
ISBELL R A, BREWSTER M Q. Optical properties of energetic materials: RDX, HMX, AP, NC/NG, and HTPB [J]. Propellants, Explosives, Pyrotechnics, 1998, 23(4): 218–224. doi: 10.1002/(SICI)1521-4087(199808)23:4<218::AID-PREP218>3.0.CO;2-A
|
[9] |
ORDEJÓN P, ARTACHO E, SOLER J M. Self-consistent order-N density-functional calculations for very large systems [J]. Physical Review B, 1996, 53(16): R10441–R10444. doi: 10.1103/PhysRevB.53.R10441
|
[10] |
SÁNCHEZ-PORTAL D, ORDEJÓN P, ARTACHO E, et al. Density-functional method for very large systems with LCAO basis sets [J]. International Journal of Quantum Chemistry, 1997, 65(5): 453–461. doi: 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
|
[11] |
SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2745–2779. doi: 10.1088/0953-8984/14/11/302
|
[12] |
DION M, RYDBERG H, SCHRÖDER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
|
[13] |
HAMADA I. Van der Waals density functional made accurate [J]. Physical Review B, 2014, 89(12): 121103. doi: 10.1103/PhysRevB.89.121103
|
[14] |
GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry, 2006, 27(15): 1787–1799. doi: 10.1002/jcc.20495
|
[15] |
GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory [J]. Journal of Computational Chemistry, 2011, 32(7): 1456–1465. doi: 10.1002/jcc.21759
|
[16] |
TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations [J]. Physical Review B, 1991, 43(3): 1993–2006. doi: 10.1103/PhysRevB.43.1993
|
[17] |
SANKEY O F, NIKLEWSKI D J. Ab initio multicenter tight-binding model for molecular dynamics simulations and other applications in covalent systems [J]. Physical Review B, 1989, 40(6): 3979–3995. doi: 10.1103/PhysRevB.40.3979
|
[18] |
JUNQUERA J, PAZ Ó, SÁNCHEZ-PORTAL D, et al. Numerical atomic orbitals for linear-scaling calculations [J]. Physical Review B, 2001, 64(23): 235111. doi: 10.1103/PhysRevB.64.235111
|
[19] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
|
[20] |
TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential [J]. Physical Review Letters, 2009, 102(22): 226401. doi: 10.1103/PhysRevLett.102.226401
|
[21] |
AMBROSCH-DRAXL C, SOFO J O. Linear optical properties of solids within the full-potential linearized augmented planewave method [J]. Computer Physics Communications, 2006, 175(1): 1–14. doi: 10.1016/j.cpc.2006.03.005
|
[22] |
TOLL J S. Causality and the dispersion relation: logical foundations [J]. Physical Review, 1956, 104(6): 1760–1770. doi: 10.1103/PhysRev.104.1760
|
[23] |
RIVAS-SILVA J F, BLAS M A, HOAT D M. Theoretical study of electronic and optical properties of antiferromagnetic β-MnS using the modified becke johnson (mBJ) potential [J]. Journal of Physics and Chemistry of Solids, 2017, 128: 310–315.
|
[24] |
BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
|
[25] |
VINET P, FERRANTE J, SMITH J R, et al. A universal equation of state for solids [J]. Journal of Physics C: Solid State Physics, 1986, 19(20): L467–L473. doi: 10.1088/0022-3719/19/20/001
|
[26] |
MCKINNON J J, JAYATILAKA D, SPACKMAN M A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces [J]. Chemistry Communications, 2007(37): 3814–3816. doi: 10.1039/b704980c
|
[27] |
SPACKMAN M A, JAYATILAKA D. Hirshfeld surface analysis [J]. CrystEngComm, 2009, 11(1): 19–32. doi: 10.1039/B818330A
|
[28] |
SPACKMAN P R, TURNER M J, MCKINNON J J, et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals [J]. Journal of Applied Crystallography, 2021, 54(3): 1006–1011. doi: 10.1107/S1600576721002910
|