Volume 36 Issue 5
Oct 2022
Turn off MathJax
Article Contents
LIU Yonggui, HUI Mengmeng, SHEN Lingyan. Numerical Study on Wave Effect of the Frictional Interface[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513
Citation: LIU Yonggui, HUI Mengmeng, SHEN Lingyan. Numerical Study on Wave Effect of the Frictional Interface[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 052301. doi: 10.11858/gywlxb.20220513

Numerical Study on Wave Effect of the Frictional Interface

doi: 10.11858/gywlxb.20220513
  • Received Date: 17 Feb 2022
  • Rev Recd Date: 09 Mar 2022
  • Accepted Date: 17 Feb 2022
  • Issue Publish Date: 11 Oct 2022
  • Interface friction is a common natural phenomenon. Based on the micro-contact fracture mechanism of friction, a two-dimensional interface friction model including a triangular micro bulge is established with linear elastic constitutive relationship and D-P failure criterion. The early dynamic behavior of the interface under transient loading is numerically calculated and analyzed by the finite element simulation method. The research shows that in the micro process of loading, there exist significant stress fluctuations and fine structure characteristics at frictional interfaces. The evolution of the wavefront in the near region of the interface has symmetrical diffusion. The interaction of the incoming stress disturbance and the micro bulge will induce the fracture of the bulge, resulting in a three-wave profile centered on the fracture surface: longitudinal wave, transverse wave, and interface wave. A new interesting phenomenon is that at the moment of loading, a micro stress disturbance is generated synchronously from the interface and propagates to the substrate in the form of longitudinal waves. More comparative examples and analysis show that the mechanism of this disturbance is related to the overall gravity micro-adjustment acting on the interface. This work reveals the early wave effect of interface friction and its micro fracture mechanism, which is expected to provide an effective way for earthquake prediction and to advance the earthquake prediction time.

     

  • loading
  • [1]
    许金泉. 界面力学 [M]. 北京: 科学出版社, 2006.

    XU J Q. The mechanics of interface [M]. Beijing: Science Press, 2006.
    [2]
    RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction [J]. Nature, 2004, 430(7003): 1005–1009. doi: 10.1038/nature02830
    [3]
    RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding [J]. Physical Review Letters, 2007, 98(22): 226103. doi: 10.1103/PhysRevLett.98.226103
    [4]
    BEN-DAVID O, COHEN G, FINEBERG J. The dynamics of the onset of frictional slip [J]. Science, 2010, 330(6001): 211–214. doi: 10.1126/science.1194777
    [5]
    ZHU Y D, ZHENG Z J, ZHANG Y L, et al. Adhesion of elastic wavy surfaces: interface strengthening/weakening and mode transition mechanisms [J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104402. doi: 10.1016/j.jmps.2021.104402
    [6]
    PERSSON B N J. Sliding friction: physical principles and applications [M]. 2nd ed. Berlin: Springer, 2000.
    [7]
    TA W R, QIU S M, WANG Y L, et al. Volumetric contact theory to electrical contact between random rough surfaces [J]. Tribology International, 2021, 160: 107007. doi: 10.1016/j.triboint.2021.107007
    [8]
    GERDE E, MARDER M. Friction and fracture [J]. Nature, 2001, 413(6853): 285–288. doi: 10.1038/35095018
    [9]
    BAUMBERGER T, BERTHOUD P, CAROLI C. Physical analysis of the state- and rate-dependent friction law. Ⅱ. dynamic friction [J]. Physical Review B, 1999, 60(6): 3928–3939. doi: 10.1103/PhysRevB.60.3928
    [10]
    BRAUN O M, MANINI N, TOSATTI E. Size scaling of static friction [J]. Physical Review Letters, 2013, 110(8): 085503. doi: 10.1103/PhysRevLett.110.085503
    [11]
    BARRAS F, AGHABABAEI R, MOLINARI J F. Onset of sliding across scales: how the contact topography impacts frictional strength [J]. Physical Review Materials, 2021, 5(2): 023605. doi: 10.1103/PHYSREVMATERIALS.5.023605
    [12]
    SHAO R L, WAHLE M, ZIMMERMANN M. A model for the dynamic friction behaviour of rubber-like materials [J]. Tribology International, 2021, 164: 107220. doi: 10.1016/j.triboint.2021.107220
    [13]
    张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化 [J]. 高压物理学报, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640

    ZHANG L, WANG W S, MIAO C H, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
    [14]
    BERMAN N, COHEN G, FINEBERG J. Dynamics and properties of the cohesive zone in rapid fracture and friction [J]. Physical Review Letters, 2020, 125(12): 125503. doi: 10.1103/PhysRevLett.125.125503
    [15]
    WANG P F, JIANG H B, XU S L, et al. Dynamic plastic instability of ring-shaped aluminum alloy with different interface behaviors [J]. International Journal of Impact Engineering, 2021, 155: 103898. doi: 10.1016/j.ijimpeng.2021.103898
    [16]
    赵剑衡, 孙承纬, 段祝平, 等. 玻璃样品表面对失效波萌生的影响 [J]. 力学学报, 2001, 33(6): 834–838. doi: 10.3321/j.issn:0459-1879.2001.06.014

    ZHAO J H, SUN C W, DUAN Z P, et al. Effect of impacted surface of K9 glass sample on formation of failure wave [J]. Acta Mechanica Sinica, 2001, 33(6): 834–838. doi: 10.3321/j.issn:0459-1879.2001.06.014
    [17]
    刘均伟, 张先锋, 刘闯, 等. 考虑摩擦因数变化的弹体高速侵彻混凝土质量侵蚀模型研究 [J]. 爆炸与冲击, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250

    LIU J W, ZHANG X F, LIU C, et al. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient [J]. Explosion and Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250
    [18]
    POCHIRAJU K V, TANDON G P, PAGANO N J. Analyses of single fiber pushout considering interfacial friction and adhesion [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(10): 2307–2338. doi: 10.1016/S0022-5096(01)00045-X
    [19]
    王蕉, 楚锡华. 冲击载荷下颗粒材料临边界区域的波动行为及变形特征分析 [J]. 力学学报, 2021, 53(9): 2395–2403. doi: 10.6052/0459-1879-21-242

    WANG J, CHU X H. Analysis of wave behavior and deformation characteristics of granular materials in pro-border zone under impact load [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2395–2403. doi: 10.6052/0459-1879-21-242
    [20]
    ZHENG W, ZHANG S Y, XU N. Jamming of packings of frictionless particles with and without shear [J]. Chinese Physics B, 2018, 27(6): 066102. doi: 10.1088/1674-1056/27/6/066102
    [21]
    SCHOLZ C H. Earthquakes and friction laws [J]. Nature, 1998, 391(6662): 37–42. doi: 10.1038/34097
    [22]
    KANAMORI H, ANDERSON D L, HEATON T H. Frictional melting during the rupture of the 1994 Bolivian earthquake [J]. Science, 1998, 279(5352): 839–842. doi: 10.1126/science.279.5352.839
    [23]
    RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes [J]. Nature Communications, 2017, 8: 15991. doi: 10.1038/ncomms15991
    [24]
    PYRAK-NOLTE L J, XU J P, HALEY G M. Elastic interface waves propagating in a fracture [J]. Physical Review Letters, 1992, 68(24): 3650–3653. doi: 10.1103/PhysRevLett.68.3650
    [25]
    XIA K W, ROSAKIS A J, KANAMORI H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition [J]. Science, 2004, 303(5665): 1859–1861. doi: 10.1126/science.1094022
    [26]
    FERRER C, SALAS F, PASCUAL M, et al. Discrete acoustic emission waves during stick-slip friction between steel samples [J]. Tribology International, 2010, 43(1/2): 1–6. doi: 10.1016/j.triboint.2009.02.009
    [27]
    BRAUN O M, BAREL I, URBAKH M. Dynamics of transition from static to kinetic friction [J]. Physical Review Letters, 2009, 103(19): 194301. doi: 10.1103/PhysRevLett.103.194301
    [28]
    SVETLIZKY I, FINEBERG J. Classical shear cracks drive the onset of dry frictional motion [J]. Nature, 2014, 509(7499): 205–208. doi: 10.1038/nature13202
    [29]
    DI BARTOLOMEO M, MASSI F, BAILLET L, et al. Wave and rupture propagation at frictional bimaterial sliding interfaces: from local to global dynamics, from stick-slip to continuous sliding [J]. Tribology International, 2012, 52: 117–131. doi: 10.1016/j.triboint.2012.03.008
    [30]
    KAMMER D S, MUÑOZ D P, MOLINARI J F. Length scale of interface heterogeneities selects propagation mechanism of frictional slip fronts [J]. Journal of the Mechanics and Physics of Solids, 2016, 88: 23–34. doi: 10.1016/j.jmps.2015.12.014
    [31]
    李永池. 波动力学 [M]. 合肥: 中国科学技术大学出版社, 2015.

    LI Y C. Wave mechanics [M]. Hefei: University of Science and Technology of China Press, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(190) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return