Citation: | YAO Chenhui, YANG Gang, ZHANG Zhe, LI Anqi. Reliability Optimization Design of Anti-Penetration Perforated Armor[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045102. doi: 10.11858/gywlxb.20220507 |
[1] |
CHOCRON S, ANDERSON C E JR, GROSCH D J, et al. Impact of the 7.62 mm APM2 projectile against the edge of a metallic target [J]. International Journal of Impact Engineering, 2001, 25(5): 423–437. doi: 10.1016/S0734-743X(00)00063-4
|
[2] |
BEN-MOSHE D, TARSI Y, ROSENBERG G. An armor assembly for armored vehicles: EP 0209221 [P]. 1986.
|
[3] |
KILIÇ N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile [J]. Materials & Design, 2014, 63: 427–438.
|
[4] |
MISHRA B, RAMAKRISHNA B, JENA P K, et al. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact [J]. Materials & Design, 2013, 43: 17–24.
|
[5] |
RADISAVLJEVIC I, BALOS S, NIKACEVIC M, et al. Optimization of geometrical characteristics of perforated plates [J]. Materials & Design, 2013, 49: 81–89.
|
[6] |
王郑. 间隙对穿孔装甲抗弹性能影响的数值分析 [J]. 科技创新与生产力, 2016(2): 87–89. doi: 10.3969/j.issn.1674-9146.2016.02.087
WANG Z. Numerical analysis about the influence of intervals on the ballistic performance of perforated armor [J]. Sci-Tech Innovation and Productivity, 2016(2): 87–89. doi: 10.3969/j.issn.1674-9146.2016.02.087
|
[7] |
王建波, 闫慧敏, 范秉源, 等. 弹着点对多孔钢板抗弹性能影响的数值模拟 [J]. 兵器材料科学与工程, 2010, 33(6): 73–75. doi: 10.3969/j.issn.1004-244X.2010.06.022
WANG J B, YAN H M, FAN B Y, et al. Numerical simulation analysis about the influence of the hitting position on the ballistic performance of the multi-hole steel plate [J]. Ordnance Material Science and Engineering, 2010, 33(6): 73–75. doi: 10.3969/j.issn.1004-244X.2010.06.022
|
[8] |
胡丽萍, 王智慧, 满红, 等. 孔结构间隙复合装甲位置效应研究 [J]. 兵器材料科学与工程, 2010, 33(1): 89–90. doi: 10.3969/j.issn.1004-244X.2010.01.025
HU L P, WANG Z H, MAN H, et al. Study on the spot effect of spaced composite armor with multi-holes [J]. Ordnance Material Science and Engineering, 2010, 33(1): 89–90. doi: 10.3969/j.issn.1004-244X.2010.01.025
|
[9] |
秦庆华, 崔天宁, 施前, 等. 孔结构金属装甲抗弹能力的数值模拟 [J]. 高压物理学报, 2018, 32(5): 055105.
QIN Q H, CUI T N, SHI Q, et al. Numerical study on ballistic resistance of metal perforated armor to projectile impact [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055105.
|
[10] |
肖红亮, 李晓源, 时捷, 等. 倾角效应对高强度钢板抗弹性能的影响 [J]. 兵器材料科学与工程, 2011, 34(6): 36–40.
XIAO H L, LI X Y, SHI J, et al. Influence of obliquity effect on the ballistic performance of high strength steel plate [J]. Ordnance Material Science and Engineering, 2011, 34(6): 36–40.
|
[11] |
李换芝. 倾角穿孔装甲对14.5 mm穿燃弹防护性能的影响 [J]. 科技创新与生产力, 2016(2): 90–91, 94. doi: 10.3969/j.issn.1674-9146.2016.02.090
LI H Z. Influence of oblique perforated armor on the protective performance of the 14.5 mm armor-piercing incendiary [J]. Sci-Tech Innovation and Productivity, 2016(2): 90–91, 94. doi: 10.3969/j.issn.1674-9146.2016.02.090
|
[12] |
彭吉祥, 崔天宁, 金永喜, 等. 斜孔结构装甲设计及抗弹性能研究 [J]. 应用力学学报, 2021, 38(3): 893–901.
PENG J X, CUI T N, JIN Y X, et al. Research on design and ballistic resistance of perforated armor with oblique holes [J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 893–901.
|
[13] |
BURIAN W, ŻOCHOWSKI P, GMITRZUK M, et al. Protection effectiveness of perforated plates made of high strength steel [J]. International Journal of Impact Engineering, 2019, 126: 27–39. doi: 10.1016/j.ijimpeng.2018.12.006
|
[14] |
CUI T N, QIN Q H, YAN W M, et al. Ballistic resistance of novel amorphous-alloy-reinforced perforated armor [J]. Acta Mechanica Solida Sinica, 2021, 34(1): 12–26. doi: 10.1007/s10338-020-00180-1
|
[15] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983: 541−547.
|
[16] |
张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用 [J]. 振动与冲击, 2013, 32(9): 187–191. doi: 10.3969/j.issn.1000-3835.2013.09.036
ZHANG D D, GUO Q T. Application of Kriging response surface in finite element model validation [J]. Journal of Vibration and Shock, 2013, 32(9): 187–191. doi: 10.3969/j.issn.1000-3835.2013.09.036
|
[17] |
周宁. ANSYS-APDL高级工程应用实例分析与二次开发 [M]. 北京: 中国水利水电出版社, 2007.
|
[18] |
JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions [J]. Journal of Global Optimization, 1998, 13(4): 455–492. doi: 10.1023/A:1008306431147
|
[19] |
SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations [J]. Engineering with Computers, 2001, 17(2): 129–150. doi: 10.1007/PL00007198
|
[20] |
KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119–139.
|
[21] |
郭领. 孔结构金属装甲抗小口径穿甲弹的厚度效应 [D]. 南京: 南京理工大学, 2012.
GUO L. The thickness effect of metal armor with poerstructure penetrating by Small caliber projectile [D]. Nanjing: Nanjing University of Science & Technology, 2012.
|
[22] |
STANAG N. Protection levels for occupants of logistic and light armoured vehicles [S]. 2004.
|
[23] |
DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design [J]. Journal of Mechanical Design, 2004, 126(2): 225–233. doi: 10.1115/1.1649968
|
[24] |
AOUES Y, CHATEAUNEUF A. Benchmark study of numerical methods for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 277–294. doi: 10.1007/s00158-009-0412-2
|
[25] |
HUANG Z L, JIANG C, ZHOU Y S, et al. An incremental shifting vector approach for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 523–543. doi: 10.1007/s00158-015-1352-7
|
[26] |
ZHANG Z, DENG W, JIANG C. Sequential approximate reliability-based design optimization for structures with multimodal random variables [J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 511–528. doi: 10.1007/s00158-020-02507-5
|