Citation: | YANG Zhicheng, LIU Longfei, LIU Lianhuang, YIN Pengzhi, WU Zhiqiang. Effect of Surface Roughness on Shear Band Behavior of 45 Steel Cylindrical Shell under External Explosion Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506 |
[1] |
刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
|
[2] |
朱建士, 陈裕泽. 核武器研制中的力学问题 [J]. 力学与实践, 2002, 24(1): 67–71. doi: 10.3969/j.issn.1000-0879.2002.01.024
ZHU J S, CHEN Y Z. The mechanics of nuclear weapons development [J]. Mechanics in Engineering, 2002, 24(1): 67–71. doi: 10.3969/j.issn.1000-0879.2002.01.024
|
[3] |
MOTT N F. A theory of the fragmentation of shells and bombs [M]//GRADY D. Fragmentation of Rings and Shells: The Legacy of N. F. Mott. Berlin: Springer Publishing, 2006: 243−294.
|
[4] |
任国武, 温上捷, 张茹, 等. 约束层对金属柱壳膨胀变形影响的数值模拟 [J]. 爆炸与冲击, 2017, 37(6): 946–951. doi: 10.11883/1001-1455(2017)06-0946-06
REN G W, WEN S J, ZHANG R, et al. Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell [J]. Explosion and Shock Waves, 2017, 37(6): 946–951. doi: 10.11883/1001-1455(2017)06-0946-06
|
[5] |
杨云川, 朱建军, 郑宇, 等. 战斗部壳体爆炸破片体/线分形维数研究 [J]. 兵工学报, 2018, 39(8): 1499–1506. doi: 10.3969/j.issn.1000-1093.2018.08.006
YANG Y C, ZHU J J, ZHENG Y, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell [J]. Acta Armamentarii, 2018, 39(8): 1499–1506. doi: 10.3969/j.issn.1000-1093.2018.08.006
|
[6] |
汤铁钢, 胡海波, 李庆忠, 等. 外部爆轰加载过程中金属圆管断裂实验研究 [J]. 爆炸与冲击, 2002, 22(4): 333–337. doi: 10.3321/j.issn:1001-1455.2002.04.008
TANG T G, HU H B, LI Q Z, et al. Studies on the fracture of steel cycinder under external explosive loading [J]. Explosion and Shock Waves, 2002, 22(4): 333–337. doi: 10.3321/j.issn:1001-1455.2002.04.008
|
[7] |
刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响 [J]. 爆炸与冲击, 2018, 38(4): 749–758. doi: 10.11883/bzycj-2016-0389
LIU L F, ZHOU Q. Effect of surface roughness on impact expansion fracture of 6061 aluminum alloy thin-walled cylindrical tube [J]. Explosion and Shock Waves, 2018, 38(4): 749–758. doi: 10.11883/bzycj-2016-0389
|
[8] |
胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107. doi: 10.3321/j.issn:1001-1455.2004.02.001
HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107. doi: 10.3321/j.issn:1001-1455.2004.02.001
|
[9] |
MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. doi: 10.1016/S0921-5093(01)01160-1
|
[10] |
罗渝松, 李伟兵, 陈志闯, 等. 内爆加载下金属柱壳的冻结回收方法 [J]. 爆炸与冲击, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
LUO Y S, LI W B, CHEN Z C, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading [J]. Explosion and Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
|
[11] |
吴文苍, 董新龙, 庞振, 等. TA2钛合金开口柱壳外爆碎片分布研究 [J]. 力学学报, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017
WU W C, DONG X L, PANG Z, et al. Study on fragments distribution of explosively driven cylinders for TA2 titanium alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017
|
[12] |
汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05
TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05
|
[13] |
禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. doi: 10.3969/j.issn.1000-1093.2019.07.011
YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. doi: 10.3969/j.issn.1000-1093.2019.07.011
|
[14] |
NESTERENKO V F, LAZARIDI A N, PERSHIN S A. Localization of deformation in copper by explosive compression of hollow cylinders [J]. Fizika Goreniyai Vzryva, 1989, 25(4): 154–155.
|
[15] |
CHEN Y J, MEYERS M A, NESTERENKO V F. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum [J]. Materials Science and Engineering: A, 1999, 268(1/2): 70–82. doi: 10.1016/S0921-5093(99)00110-0
|
[16] |
LOVINGER Z, RITTEL D, ROSENBERG Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders [J]. Journal of the Mechanics and Physics of Solids, 2015, 79: 134–156. doi: 10.1016/j.jmps.2015.04.007
|
[17] |
杨涛, 刘龙飞, 杨智程, 等. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响 [J]. 力学学报, 2021, 53(3): 813–822. doi: 10.6052/0459-1879-20-433
YANG T, LIU L F, YANG Z C, et al. Effect of surface roughness on the formation of shear band in Ti-6Al-4V alloy cylindrical shell [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813–822. doi: 10.6052/0459-1879-20-433
|
[18] |
NESTERENKO V F, BONDAR M P. Investigation of deformation localization by the “thick-walled cylinder” method [J]. DYMAT Journal, 1994, 1(3): 245–251.
|
[19] |
NESTERENKO V F, XUE Q, MEYERS M A. Self-organization of shear bands in stainless steel: grain size effect [J]. Journal of Physics (Ⅳ), 2000, 10: 269–274.
|
[20] |
MEYERS M A, XUE Q, NESTERENKO V F. Evolution in the patterning of adiabatic shear bands [J]. AIP Conference Proceedings, 2002, 620(1): 567–570. doi: 10.1063/1.1483602
|
[21] |
黄西成. 内爆与外爆加载下壳体的力学状态及破坏模式分析 [D]. 北京: 中国工程物理研究院, 2010.
HUANG X C. Analysis of mechanical states and failure modes of shells subjected to implosive and explosive loadings [D]. Beijing: China Academy of Engineering Physics, 2010.
|
[22] |
YANG Y, LI X M, CHEN S W, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy [J]. Materials Science and Engineering: A, 2010, 527(20): 5084–5091. doi: 10.1016/j.msea.2010.04.079
|
[23] |
任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究 [J]. 兵工学报, 2016, 37(1): 77–82. doi: 10.3969/j.issn.1000-1093.2016.01.012
REN G W, GUO Z L, TANG T G, et al. Experimental research on fracture of metal case under loading at high strain rate [J]. Acta Armamentarii, 2016, 37(1): 77–82. doi: 10.3969/j.issn.1000-1093.2016.01.012
|
[24] |
汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008
TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008
|
[25] |
张世文, 金山, 刘仓理. 含缺陷厚壁圆管爆轰膨胀断裂的数值模拟 [J]. 应用力学学报, 2010, 27(3): 622–625.
ZHANG S W, JIN S, LIU C L. Simulation of the dynamic expanding process of thick-walled cylinder with defects [J]. Chinese Journal of Applied Mechanics, 2010, 27(3): 622–625.
|
[26] |
任国武, 郭昭亮, 张世文, 等. 金属柱壳膨胀断裂的实验与数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 895–900. doi: 10.11883/1001-1455(2015)06-0895-06
REN G W, GUO Z L, ZHANG S W, et al. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell [J]. Explosion and Shock Waves, 2015, 35(6): 895–900. doi: 10.11883/1001-1455(2015)06-0895-06
|
[27] |
宋鹏飞, 董新龙, 周刚毅, 等. 帽型试样绝热剪切演化实验及数值模拟 [J]. 宁波大学学报(理工版), 2018, 31(2): 50–54. doi: 10.3969/j.issn.1001-5132.2018.02.010
SONG P F, DONG X L, ZHOU G Y, et al. Experimental and numerical analysis of adiabatic shear evolution in hat-shaped specimen [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2018, 31(2): 50–54. doi: 10.3969/j.issn.1001-5132.2018.02.010
|
[28] |
REMINGTON T P, OWEN J M, NAKAMURA A M, et al. Numerical simulations of laboratory-scale, hypervelocity-impact experiments for asteroid-deflection code validation [J]. Earth and Space Science, 2020, 7(4): e2018EA000474. doi: 10.1029/2018EA000474
|
[29] |
滕凌虹, 曹伟伟, 朱波, 等. ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展 [J]. 材料导报, 2021, 35(11): 11145–11153. doi: 10.11896/cldb.19110218
TENG L H, CAO W W, ZHU B, et al. Application and development of ABAQUS in simulating high and low velocity impact metallic and composite targets of projectiles [J]. Materials Reports, 2021, 35(11): 11145–11153. doi: 10.11896/cldb.19110218
|
[30] |
吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析 [J]. 爆炸与冲击, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
WU S S, DONG X L, YU X L. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method [J]. Explosion and Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
|
[31] |
谢富佩, 徐绯, 曾卓, 等. 复合圆柱壳冲击压缩数值模拟及稳定性研究 [J]. 爆炸与冲击, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431
XIE F P, XU F, ZENG Z, et al. Numerical simulation on stability of composite cylindrical shell under impact compression [J]. Explosion and Shock Waves, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431
|
[32] |
彭克锋, 崔世堂, 潘昊, 等. 冲击载荷作用下柱壳链中的弹性波传播简化模型及其解析解 [J]. 爆炸与冲击, 2021, 41(1): 011403. doi: 10.11883/bzycj-2020-0246
PENG K F, CUI S T, PAN H, et al. Simplified model of elastic wave propagation in cylindrical shell chain under impact load and its analytical solution [J]. Explosion and Shock Waves, 2021, 41(1): 011403. doi: 10.11883/bzycj-2020-0246
|
[33] |
舒旗, 董新龙, 俞鑫炉. 基于Hopkinson压杆的M型试样动态拉伸实验方法研究 [J]. 爆炸与冲击, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433
SHU Q, DONG X L, YU X L. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar [J]. Explosion and Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433
|
[34] |
刘明涛. 剪切带演化模型及其在模拟柱壳内外爆剪切失稳中的应用 [D]. 合肥: 中国科学技术大学, 2014.
LIU M T. A multi-stage probabilistic model for shear band and its application in expanding fracture of cylinder and thick-walled cylinder [D]. Hefei: University of Science and Technology of China, 2014.
|
[35] |
LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. doi: 10.1016/j.ijimpeng.2017.07.008
|
[36] |
LOVINGER Z, RITTEL D, ROSENBERG Z. Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders [J]. Mechanics of Materials, 2018, 116: 130–145. doi: 10.1016/j.mechmat.2017.01.010
|
[37] |
胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192. doi: 10.3321/j.issn:1001-1455.2003.02.017
HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192. doi: 10.3321/j.issn:1001-1455.2003.02.017
|
[38] |
宫能平, 李贤. 45#钢动态断裂韧性测试的试验研究 [J]. 安徽理工大学学报(自然科学版), 2007, 27(4): 65–68.
GONG N P, LI X. Experimental study of dynamic fracture toughness of 45# steel [J]. Journal of Anhui University of Science and Technology (Natural Science), 2007, 27(4): 65–68.
|
[39] |
俞鑫炉, 董新龙, 潘顺吉. 不同爆炸载荷下TA2钛合金圆管膨胀破坏过程 [J]. 爆炸与冲击, 2018, 38(1): 148–154. doi: 10.11883/bzycj-2017-0014
YU X L, DONG X L, PAN S J. Fracture behaviors of explosively driven TA2 alloy cylinders under different loadings [J]. Explosion and Shock Waves, 2018, 38(1): 148–154. doi: 10.11883/bzycj-2017-0014
|
[40] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
|
[41] |
汤祁. 面向45#钢切削残余应力仿真的JC本构模型参数和刀: 屑摩擦系数的确定 [D]. 武汉: 华中科技大学, 2015.
TANG Q. Identification of JC constitutive model parameters and tool-chip friction coefficient for 45# steel cutting residual stress simulation [D]. Wuhan: Huazhong University of Science and Technology, 2015.
|
[42] |
宋浦, 杨凯, 梁安定, 等. 国内外TNT炸药的JWL状态方程及其能量释放差异分析 [J]. 火炸药学报, 2013, 36(2): 42–45. doi: 10.3969/j.issn.1007-7812.2013.02.010
SONG P, YANG K, LIANG A D, et al. Difference analysis on JWL-EOS and energy release of different TNT charge [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 42–45. doi: 10.3969/j.issn.1007-7812.2013.02.010
|