Citation: | ZHANG Yanze, QIN Jian, MENG Xiangyao, LIU Yuankai, WEN Yanbo, HUANG Ruiyuan. Flow Stress Characteristics and Constitutive Model of ZL101A Aluminum Alloy under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034105. doi: 10.11858/gywlxb.20210923 |
[1] |
HU M D, WANG T T, FANG H, et al. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. Journal of Materials Science & Technology, 2021, 76: 76–85.
|
[2] |
ZHANG M S, LIU K L, WANG B, et al. Accelerating pore nucleation and eutectic Si growth kinetics by increasing Cu and Sc for Al-Si-Mg alloys: in-situ observation [J]. Journal of Alloys and Compounds, 2021, 869: 159173. doi: 10.1016/j.jallcom.2021.159173
|
[3] |
ZHU B W, ZANELLA C. Influence of Fe-rich intermetallics and their segregation on anodising properties of Al-Si-Mg rheocast alloys [J]. Surface and Coatings Technology, 2021, 422: 127570. doi: 10.1016/j.surfcoat.2021.127570
|
[4] |
SHAH A W, HA S H, KIM B H, et al. Effect of Si addition on flow behavior in Al-Mg and Al-Mg-Si molten alloys [J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6670–6678. doi: 10.1007/s11661-020-06052-0
|
[5] |
易湘斌, 张俊喜, 李宝栋, 等. 高温、高应变率下TB6钛合金的动态压缩性能 [J]. 稀有金属材料与工程, 2019, 48(4): 1220–1224.
YI X B, ZHANG J X, LI B D, et al. Dynamic compressive mechanical properties of TB6 titanium alloy under high temperature and high strain rate [J]. Rare Metal Materials and Engineering, 2019, 48(4): 1220–1224.
|
[6] |
武永甫, 李淑慧, 侯波, 等. 铝合金7075-T651动态流变应力特征及本构模型 [J]. 中国有色金属学报, 2013, 23(3): 658–665.
WU Y F, LI S H, HOU B, et al. Dynamic flow stress characteristics and constitutive model of aluminum 7075-T651 [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 658–665.
|
[7] |
WANG X Y, HUANG C Z, ZOU B, et al. Dynamic behavior and a modified Johnson-Cook constitutive model of Inconel 718 at high strain rate and elevated temperature [J]. Materials Science and Engineering: A, 2013, 580: 385–390. doi: 10.1016/j.msea.2013.05.062
|
[8] |
王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建 [J]. 材料导报, 2021, 35(10): 10096–10102. doi: 10.11896/cldb.20060201
WANG Y, ZHANG C M, ZHANG Y. Study on static and dynamic mechanical properties of aviation Al7050 alloy and construction of JC constitutive model [J]. Materials Reports, 2021, 35(10): 10096–10102. doi: 10.11896/cldb.20060201
|
[9] |
ZHANG D, ZHANG X M, NIE G C, et al. Characterization of material strain and thermal softening effects in the cutting process [J]. International Journal of Machine Tools and Manufacture, 2021, 160: 103672. doi: 10.1016/j.ijmachtools.2020.103672
|
[10] |
SKUDNOV V A, SOROKINA S A. Relation between the maximum specific deformation energy, hardness, and endurance limit of deformable aluminum alloys [J]. Metal Science and Heat Treatment, 1996, 38(8): 353–356. doi: 10.1007/BF01395324
|
[11] |
ZONG Z, ZHAO Y J, XU F, et al. Dynamic responses of a full-scale aluminum ship subjected to underwater shock [J]. Journal of Ship Mechanics, 2013, 17(6): 656–671.
|
[12] |
缪素菲, 刘敬喜, 赵耀, 等. 船用铝合金板架结构典型节点的疲劳试验研究 [J]. 船舶力学, 2020, 24(7): 934–941. doi: 10.3969/j.issn.1007-7294.2020.07.011
MIAO S F, LIU J X, ZHAO Y, et al. Experimental study of fatigue properties of aluminium alloy plate [J]. Journal of Ship Mechanics, 2020, 24(7): 934–941. doi: 10.3969/j.issn.1007-7294.2020.07.011
|
[13] |
严平, 赵垭丽, 李昕, 等. 基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究 [J]. 爆炸与冲击, 2021, 49(9): 60–74.
YAN P, ZHAO Y L, LI X, et al. Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model [J]. Explosion and Shock Waves, 2021, 49(9): 60–74.
|
[14] |
ALYANAK E, GRANDHI R, PENMETSA R. Optimum design of a supercavitating torpedo considering overall size, shape, and structural configuration [J]. International Journal of Solids and Structures, 2006, 43(3/4): 642–657.
|
[15] |
WAN B B, CHEN W P, LIU L S, et al. Effect of trace yttrium addition on the microstructure and tensile properties of recycled Al-7Si-0.3Mg-1.0Fe casting alloys [J]. Materials Science and Engineering: A, 2016, 666: 165–175. doi: 10.1016/j.msea.2016.04.036
|
[16] |
LI W, CHEN H T, LIANG Z, et al. Effects of SiC orientations and particle sizes on the low cycle fatigue properties of SiCp/A356 composite [J]. International Journal of Fatigue, 2021, 152: 106420. doi: 10.1016/j.ijfatigue.2021.106420
|
[17] |
STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
|
[18] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
|
[19] |
BUZYURKIN A E, GLADKY I L, KRAUS E I. Determination and verification of Johnson-Cook model parameters at high-speed deformation of titanium alloys [J]. Aerospace Science and Technology, 2015, 45: 121–127. doi: 10.1016/j.ast.2015.05.001
|
[20] |
HUANG Z P, GAO L H, WANG Y W, et al. Determination of the Johnson-Cook constitutive model parameters of materials by cluster global optimization algorithm [J]. Journal of Materials Engineering and Performance, 2016, 25(9): 4099–4107. doi: 10.1007/s11665-016-2178-1
|
[21] |
SHOKRY A. On the constitutive modeling of a powder metallurgy nanoquasicrystalline Al93Fe3Cr2Ti2 alloy at elevated temperatures [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(3): 118. doi: 10.1007/s40430-019-1617-y
|
[22] |
SHOKRY A, GOWID S, KHARMANDA G, et al. Constitutive models for the prediction of the hot deformation behavior of the 10% Cr steel alloy [J]. Materials, 2019, 12(18): 2873. doi: 10.3390/ma12182873
|
[23] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
|
[24] |
GOLDTHORPE B D. Constitutive equations for annealed and explosively shocked iron for application to high strain rates and large strains [J]. Journal de Physique Ⅳ, 1991, 1(C3): 829–835.
|
[25] |
张宏建, 温卫东, 崔海涛, 等. 不同温度下IC10合金的本构关系 [J]. 航空学报, 2008, 29(2): 499–504. doi: 10.3321/j.issn:1000-6893.2008.02.039
ZHANG H J, WEN W D, CUI H T, et al. Constitutive analysis of alloy IC10 at different temperatures [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 499–504. doi: 10.3321/j.issn:1000-6893.2008.02.039
|
[26] |
PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. doi: 10.1016/S0734-743X(01)00018-5
|
[27] |
张志强, 李佳浩, 黄镇, 等. Mg-10Gd-3Y-0.6Zr-1Ag镁合金热压缩变形行为研究 [J]. 材料科学与工艺, 2014, 22(6): 1–5. doi: 10.11951/j.issn.1005-0299.20140601
ZHANG Z Q, LI J H, HUANG Z, et al. Hot compression deformation behavior of the Mg-10Gd-3Y-0.6Zr-1Ag magnesium alloy [J]. Materials Science and Technology, 2014, 22(6): 1–5. doi: 10.11951/j.issn.1005-0299.20140601
|
[28] |
历长云, 胡玉昆, 郑喜军, 等. 热压烧结SiCp/ZL101A复合材料显微组织研究 [J]. 稀有金属材料与工程, 2012, 41(Suppl 2): 413–416.
LI C Y, HU Y K, ZHENG X J, et al. Study of microstructure of SiCp/ZL101A composites by vacuum hot-pressing sintering processing [J]. Rare Metal Materials and Engineering, 2012, 41(Suppl 2): 413–416.
|
[29] |
CHEN X M, LIN Y C, HU H W, et al. An enhanced Johnson-Cook model for hot compressed A356 aluminum alloy [J]. Advanced Engineering Materials, 2021, 23(1): 2000704. doi: 10.1002/adem.202000704
|
[30] |
罗中华, 张质良, 杨红亮. A356合金半固态流动特性的研究 [J]. 热加工工艺, 2008, 37(17): 1–4,98. doi: 10.3969/j.issn.1001-3814.2008.17.001
LUO Z H, ZHANG Z L, YANG H L. Investigation of flow behavior of A356 semi-solid alloy [J]. Hot Working Technology, 2008, 37(17): 1–4,98. doi: 10.3969/j.issn.1001-3814.2008.17.001
|
[31] |
周国才, 胡时胜, 付峥. 用于测量材料高温动态力学性能的SHPB技术 [J]. 实验力学, 2010, 25(1): 9–15.
ZHOU G C, HU S S, FU Z. SHPB technique used for measuring dynamic properties of material in high temperature [J]. Journal of Experimental Mechanics, 2010, 25(1): 9–15.
|
[32] |
CHIDDISTER J L, MALVERN L E. Compression-impact testing of aluminum at elevated temperatures [J]. Experimental Mechanics, 1963, 3(4): 81–90. doi: 10.1007/BF02325890
|
[33] |
李建光, 施琪, 曹结东. Johnson-Cook本构方程的参数标定 [J]. 兰州理工大学学报, 2012, 38(2): 164–167. doi: 10.3969/j.issn.1673-5196.2012.02.038
LI J G, SHI Q, CAO J D. Parameters calibration for Johnson-Cook constitutive equation [J]. Journal of Lanzhou University of Technology, 2012, 38(2): 164–167. doi: 10.3969/j.issn.1673-5196.2012.02.038
|
[34] |
郭学锋. 细晶镁合金制备方法及组织与性能 [M]. 北京: 冶金工业出版社, 2010: 168−170.
GUO X F. Refined Mg alloys and their microstructures and properties [M]. Beijing: Metallurgical Industry Press, 2010: 168−170.
|
[35] |
杨胜利, 沈健, 陈利阳, 等. Al-Cu-Li合金热变形过程中微观组织的动态演变规律 [J]. 中国有色金属学报, 2019, 29(4): 674–683.
YANG S L, SHEN J, CHEN L Y, et al. Dynamic evolution of microstructure of Al-Cu-Li alloy during hot deformation [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4): 674–683.
|