Citation: | ZHANG Chang, SUN Xiaowei, SONG Ting, TIAN Junhong, LIU Zijiang. First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042201. doi: 10.11858/gywlxb.20210916 |
[1] |
CAO A H, ZHAO W J, ZHOU Q Y, et al. A superhard allotrope of carbon: ibam-C and its BN phase [J]. Chemical Physics Letters, 2019, 714: 119–124. doi: 10.1016/j.cplett.2018.10.079
|
[2] |
FENG S Q, YANG Y, GUO F, et al. Structural, elastic, electronic and hardness properties of osmium diboride predicted from first principles calculations [J]. Journal of Alloys and Compounds, 2020, 844: 156098. doi: 10.1016/j.jallcom.2020.156098
|
[3] |
WANG C C, TAO Q, DONG S S, et al. Synthesis and mechanical character of hexagonal phase δ-WN [J]. Inorganic Chemistry, 2017, 56(7): 3970–3975. doi: 10.1021/acs.inorgchem.6b03041
|
[4] |
CAI Y X, XIONG J M, LIU Y B, et al. Electronic structure and chemical hydrogen storage of a porous sp3 tetragonal BC2N compound [J]. Journal of Alloys and Compounds, 2017, 724: 229–233. doi: 10.1016/j.jallcom.2017.06.343
|
[5] |
MOHAMMADI R, LECH A T, XIE M, et al. Tungsten tetraboride, an inexpensive superhard material [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10958–10962. doi: 10.1073/pnas.1102636108
|
[6] |
KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials [J]. Science, 2005, 308(5726): 1268–1269. doi: 10.1126/science.1109830
|
[7] |
GOU H Y, LI Z P, NIU H, et al. Unusual rigidity and ideal strength of CrB4 and MnB4 [J]. Applied Physics Letters, 2012, 100(11): 111907. doi: 10.1063/1.3692777
|
[8] |
CHONG X Y, JIANG Y H, ZHOU R, et al. Elastic properties and electronic structures of Cr xB y as superhard compounds [J]. Journal of Alloys and Compounds, 2014, 610: 684–694. doi: 10.1016/j.jallcom.2014.05.010
|
[9] |
ANDERSSON S, LUNDSTRÖM T. The crystal structure of CrB4 [J]. Acta Chemica Scandinavica, 1968, 22(10): 3103–3110.
|
[10] |
KOTZOTT D, ADE M, HILLEBRECHT H. Synthesis and crystal structures of α- and β- modifications of Cr2IrB2 containing 4-membered B4 chain fragments, the τ-boride Cr7.9Ir14.1B6 and orthorhombic Cr2B [J]. Solid State Sciences, 2008, 10(3): 291–302. doi: 10.1016/j.solidstatesciences.2007.09.014
|
[11] |
OKADA S, ATODA T, HIGASHI I. Structural investigation of Cr2B3, Cr3B4, and CrB by single-crystal diffractometry [J]. Journal of Solid State Chemistry, 1987, 68(1): 61–67. doi: 10.1016/0022-4596(87)90285-4
|
[12] |
GIANOGLIO C, PRADELLI G, VALLINO M. Solid state equilibria in the Cr-Fe-B system at the temperature of 1 373 K [J]. Metallurgical Science and Tecnology, 1983, 1(2): 51–57.
|
[13] |
WONG-NG W, MCMURDIE H F, PARETZKIN B, et al. Reference X-ray diffraction powder patterns of fifteen ceramic phases [J]. Powder Diffraction, 1987, 2(4): 257–265. doi: 10.1017/S0885715600012926
|
[14] |
NIU H Y, WANG J Q, CHEN X Q, et al. Structure, bonding, and possible superhardness of CrB4 [J]. Physical Review B, 2012, 85(14): 144116. doi: 10.1103/PhysRevB.85.144116
|
[15] |
ZHANG Y K, WU L L, WAN B, et al. Structural variety beyond appearance: high-pressure phases of CrB4 in comparison with FeB4 [J]. Physical Chemistry Chemical Physics, 2016, 18(4): 2361–2368. doi: 10.1039/C5CP06745F
|
[16] |
WANG S, YU X, ZHANG J, et al. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4 [J]. Journal of Superhard Materials, 2014, 36(4): 279–287. doi: 10.3103/S1063457614040066
|
[17] |
OKADA S, KUDOU K, IIZUMI K, et al. Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions [J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 429–435.
|
[18] |
MIAO N H, SA B S, ZHOU J, et al. Theoretical investigation on the transition-metal borides with Ta3B4-type structure: a class of hard and refractory materials [J]. Computational Materials Science, 2011, 50(4): 1559–1566. doi: 10.1016/j.commatsci.2010.12.015
|
[19] |
XING W D, MENG F Y, YU R. Strengthening materials by changing the number of valence electrons [J]. Computational Materials Science, 2017, 129: 252–258. doi: 10.1016/j.commatsci.2016.12.037
|
[20] |
ZHANG Y M, LIU D, ZHAO Y H, et al. Physical properties and electronic structure of Cr2B under pressure [J]. Physica Status Solidi (B), 2021, 258(2): 2000212. doi: 10.1002/pssb.202000212
|
[21] |
DOVALE-FARELO V, TAVADZE P, VERSTRAETE M J, et al. Exploring the elastic and electronic properties of chromium molybdenum diboride alloys [J]. Journal of Alloys and Compounds, 2021, 866: 158885. doi: 10.1016/j.jallcom.2021.158885
|
[22] |
OKADA S, ATODA T, HIGASHI I, et al. Preparation of single crystals of a new boride Cr2B3 by the aluminium-flux technique and some of its properties [J]. Journal of the Less Common Metals, 1985, 113(2): 331–339. doi: 10.1016/0022-5088(85)90289-9
|
[23] |
WATANABE K, SAKAIRI M, TAKAHASHI H, et al. Formation of Al-Zr composite oxide films on aluminum by sol-gel coating and anodizing [J]. Journal of Electroanalytical Chemistry, 1999, 473(1/2): 250–255.
|
[24] |
PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
|
[25] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
|
[26] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
|
[27] |
VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides [J]. Journal of Applied Physics, 2004, 95(8): 3851–3879. doi: 10.1063/1.1682673
|
[28] |
WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
|
[29] |
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society: Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
|
[30] |
CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19(9): 1275–1281. doi: 10.1016/j.intermet.2011.03.026
|
[31] |
PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
|
[32] |
SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions [J]. Nature, 1994, 371(6499): 683–686. doi: 10.1038/371683a0
|