Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
ZHANG Chang, SUN Xiaowei, SONG Ting, TIAN Junhong, LIU Zijiang. First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042201. doi: 10.11858/gywlxb.20210916
Citation: ZHANG Chang, SUN Xiaowei, SONG Ting, TIAN Junhong, LIU Zijiang. First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042201. doi: 10.11858/gywlxb.20210916

First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure

doi: 10.11858/gywlxb.20210916
  • Received Date: 10 Dec 2021
  • Rev Recd Date: 06 Feb 2022
  • Accepted Date: 06 Feb 2022
  • Available Online: 30 Jun 2022
  • Issue Publish Date: 28 Jul 2022
  • By using first-principles method based on density functional theory, the crystal structures and the electronic structures of Sc, Ti, V and Zr element doped Cr2B3 under zero pressure, and their elastic constants and hardness in the pressure range of 0−150 GPa are calculated. According to the calculation, Cr2B3 and its doped compounds all meet the mechanical stability. At zero pressure, the Vicker’s hardness of Cr2B3 can be improved by adding Sc, Ti, V and Zr elements, in which the hardness of Ti-doped Cr2B3 is increased from 26.3 GPa to 40.2 GPa, increasing by 52.9%, reaching the standard of superhard materials, and the shear moduli of Ti and V doped Cr2B3 increase by 14.3% and 16.2%, respectively, and the Young’s moduli of the Ti and V doped Cr2B3 increase by 8.2% and 12.0%, respectively. The analysis of electronic structures shows that Sc, Ti, V and Zr can enhance the degree of electronic localization between B and B, thus enhance the covalent bonding strength and increase the hardness of Cr2B3. In addition, the elastic constants, the bulk elastic modulus, the shear modulus, the Young’s modulus and the hardness of Cr2B3 increase with pressure augmentation, but even so, the hardness is still low, merely 28.3 GPa at 150 GPa, while the hardness of the V element doped Cr2B3 is nearly constant (about 37 GPa) in the pressure range of 0−150 GPa. This work provides a theoretical reference for an extending application of Cr2B3 in special conditions, such as high pressure.

     

  • loading
  • [1]
    CAO A H, ZHAO W J, ZHOU Q Y, et al. A superhard allotrope of carbon: ibam-C and its BN phase [J]. Chemical Physics Letters, 2019, 714: 119–124. doi: 10.1016/j.cplett.2018.10.079
    [2]
    FENG S Q, YANG Y, GUO F, et al. Structural, elastic, electronic and hardness properties of osmium diboride predicted from first principles calculations [J]. Journal of Alloys and Compounds, 2020, 844: 156098. doi: 10.1016/j.jallcom.2020.156098
    [3]
    WANG C C, TAO Q, DONG S S, et al. Synthesis and mechanical character of hexagonal phase δ-WN [J]. Inorganic Chemistry, 2017, 56(7): 3970–3975. doi: 10.1021/acs.inorgchem.6b03041
    [4]
    CAI Y X, XIONG J M, LIU Y B, et al. Electronic structure and chemical hydrogen storage of a porous sp3 tetragonal BC2N compound [J]. Journal of Alloys and Compounds, 2017, 724: 229–233. doi: 10.1016/j.jallcom.2017.06.343
    [5]
    MOHAMMADI R, LECH A T, XIE M, et al. Tungsten tetraboride, an inexpensive superhard material [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10958–10962. doi: 10.1073/pnas.1102636108
    [6]
    KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials [J]. Science, 2005, 308(5726): 1268–1269. doi: 10.1126/science.1109830
    [7]
    GOU H Y, LI Z P, NIU H, et al. Unusual rigidity and ideal strength of CrB4 and MnB4 [J]. Applied Physics Letters, 2012, 100(11): 111907. doi: 10.1063/1.3692777
    [8]
    CHONG X Y, JIANG Y H, ZHOU R, et al. Elastic properties and electronic structures of Cr xB y as superhard compounds [J]. Journal of Alloys and Compounds, 2014, 610: 684–694. doi: 10.1016/j.jallcom.2014.05.010
    [9]
    ANDERSSON S, LUNDSTRÖM T. The crystal structure of CrB4 [J]. Acta Chemica Scandinavica, 1968, 22(10): 3103–3110.
    [10]
    KOTZOTT D, ADE M, HILLEBRECHT H. Synthesis and crystal structures of α- and β- modifications of Cr2IrB2 containing 4-membered B4 chain fragments, the τ-boride Cr7.9Ir14.1B6 and orthorhombic Cr2B [J]. Solid State Sciences, 2008, 10(3): 291–302. doi: 10.1016/j.solidstatesciences.2007.09.014
    [11]
    OKADA S, ATODA T, HIGASHI I. Structural investigation of Cr2B3, Cr3B4, and CrB by single-crystal diffractometry [J]. Journal of Solid State Chemistry, 1987, 68(1): 61–67. doi: 10.1016/0022-4596(87)90285-4
    [12]
    GIANOGLIO C, PRADELLI G, VALLINO M. Solid state equilibria in the Cr-Fe-B system at the temperature of 1 373 K [J]. Metallurgical Science and Tecnology, 1983, 1(2): 51–57.
    [13]
    WONG-NG W, MCMURDIE H F, PARETZKIN B, et al. Reference X-ray diffraction powder patterns of fifteen ceramic phases [J]. Powder Diffraction, 1987, 2(4): 257–265. doi: 10.1017/S0885715600012926
    [14]
    NIU H Y, WANG J Q, CHEN X Q, et al. Structure, bonding, and possible superhardness of CrB4 [J]. Physical Review B, 2012, 85(14): 144116. doi: 10.1103/PhysRevB.85.144116
    [15]
    ZHANG Y K, WU L L, WAN B, et al. Structural variety beyond appearance: high-pressure phases of CrB4 in comparison with FeB4 [J]. Physical Chemistry Chemical Physics, 2016, 18(4): 2361–2368. doi: 10.1039/C5CP06745F
    [16]
    WANG S, YU X, ZHANG J, et al. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4 [J]. Journal of Superhard Materials, 2014, 36(4): 279–287. doi: 10.3103/S1063457614040066
    [17]
    OKADA S, KUDOU K, IIZUMI K, et al. Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions [J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 429–435.
    [18]
    MIAO N H, SA B S, ZHOU J, et al. Theoretical investigation on the transition-metal borides with Ta3B4-type structure: a class of hard and refractory materials [J]. Computational Materials Science, 2011, 50(4): 1559–1566. doi: 10.1016/j.commatsci.2010.12.015
    [19]
    XING W D, MENG F Y, YU R. Strengthening materials by changing the number of valence electrons [J]. Computational Materials Science, 2017, 129: 252–258. doi: 10.1016/j.commatsci.2016.12.037
    [20]
    ZHANG Y M, LIU D, ZHAO Y H, et al. Physical properties and electronic structure of Cr2B under pressure [J]. Physica Status Solidi (B), 2021, 258(2): 2000212. doi: 10.1002/pssb.202000212
    [21]
    DOVALE-FARELO V, TAVADZE P, VERSTRAETE M J, et al. Exploring the elastic and electronic properties of chromium molybdenum diboride alloys [J]. Journal of Alloys and Compounds, 2021, 866: 158885. doi: 10.1016/j.jallcom.2021.158885
    [22]
    OKADA S, ATODA T, HIGASHI I, et al. Preparation of single crystals of a new boride Cr2B3 by the aluminium-flux technique and some of its properties [J]. Journal of the Less Common Metals, 1985, 113(2): 331–339. doi: 10.1016/0022-5088(85)90289-9
    [23]
    WATANABE K, SAKAIRI M, TAKAHASHI H, et al. Formation of Al-Zr composite oxide films on aluminum by sol-gel coating and anodizing [J]. Journal of Electroanalytical Chemistry, 1999, 473(1/2): 250–255.
    [24]
    PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [25]
    VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
    [26]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [27]
    VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides [J]. Journal of Applied Physics, 2004, 95(8): 3851–3879. doi: 10.1063/1.1682673
    [28]
    WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
    [29]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society: Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [30]
    CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19(9): 1275–1281. doi: 10.1016/j.intermet.2011.03.026
    [31]
    PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
    [32]
    SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions [J]. Nature, 1994, 371(6499): 683–686. doi: 10.1038/371683a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views(456) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return