Volume 36 Issue 1
Jan 2022
Turn off MathJax
Article Contents
LI Xin, HE Duanwei. Effect of Magma Solidification under High Pressure on Mechanical State of Lithosphere[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011203. doi: 10.11858/gywlxb.20210905
Citation: LI Xin, HE Duanwei. Effect of Magma Solidification under High Pressure on Mechanical State of Lithosphere[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011203. doi: 10.11858/gywlxb.20210905

Effect of Magma Solidification under High Pressure on Mechanical State of Lithosphere

doi: 10.11858/gywlxb.20210905
  • Received Date: 17 Nov 2021
  • Rev Recd Date: 31 Dec 2021
  • Plate tectonic activity is closely related to the lithosphere and is the physical source of major geological activities such as earthquakes, but its dynamic mechanism is not clear. This paper will explore the force source mechanism of plate movement by analyzing the influence of magma solidification in a high-pressure environment inside the Earth on the mechanical state of the lithosphere. The Earth as a whole is constantly radiating heat into outer space, and its interior is in a state of liquid-solid coexistence under high pressure and high temperature. The solidification process of molten magma has continued since the formation of the Earth, and this liquid-solid transition will result in density changes and latent heat release in the Earth’s interior, reducing the pressure and supporting force at the bottom of the rigid lithosphere. We found that the lithosphere is not strong enough to support its dead weight, and any pressure fluctuations at the bottom destabilize its mechanical structure. Due to the constraint of rigid and brittle lithosphere, the solidification of magma under high pressure in the Earth will inevitably lead to the change of the mechanical state of the lithosphere. Under the action of gravity, the interaction between plates intensifies, and local stress accumulation exceeds the strength limit of rocks, leading to fracture in the lithosphere. The accumulated stress is released in the weak zone of the lithosphere through geological activities such as earthquakes and adjusts itself to reach a new mechanical equilibrium. And plate boundaries are the weakest parts of the lithosphere, so there’s a lot of seismic activity. The above process is repeated over and over again, and this is where the driving force of plate movement comes from.

     

  • loading
  • [1]
    AHRENS T J. The origin of the Earth [J]. Physics Today, 1994, 47(8): 38–45. doi: 10.1063/1.881436
    [2]
    MA X L, SUN X L, THOMAS C. Localized ultra-low velocity zones at the eastern boundary of Pacific LLSVP [J]. Earth and Planetary Science Letters, 2019, 507: 40–49. doi: 10.1016/j.jpgl.2018.11.037
    [3]
    ONO S. Experimental constraints on the temperature profile in the lower mantle [J]. Physics of the Earth and Planetary Interiors, 2008, 170(3/4): 267–273. doi: 10.1016/j.pepi.2008.06.033
    [4]
    LAY T, WILLIAMS Q, GARNERO E J. The core-mantle boundary layer and deep Earth dynamics [J]. Nature, 1998, 392(6675): 461–468. doi: 10.1038/33083
    [5]
    MONTAGNER J P. Earth’s structure, global [M]. Dordrecht: Springer Science & Business Media, 2011: 144–147.
    [6]
    FROST D J. The upper mantle and transition zone [J]. Elements, 2008, 4(3): 171–176. doi: 10.2113/GSELEMENTS.4.3.171
    [7]
    KARATO S I. On the origin of the asthenosphere [J]. Earth and Planetary Science Letters, 2012, 321/322: 95–103. doi: 10.1016/j.jpgl.2012.01.001
    [8]
    PHILPOTTS A R, AGUE J J. Principles of igneous and metamorphic petrology [M]. Cambridge, UK: Cambridge University Press, 2021.
    [9]
    WEGENER A. Die entstehung der kontinente [J]. Geologische Rundschau, 1912, 3(4): 276–292. doi: 10.1007/BF02202896
    [10]
    BACKUS G E. Magnetic anomalies over oceanic ridges [J]. Nature, 1964, 201(4919): 591–592. doi: 10.1038/201591a0
    [11]
    DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor [J]. Nature, 1961, 190(4779): 854–857. doi: 10.1038/190854a0
    [12]
    MCKENZIE D P, PARKER R L. The North Pacific: an example of tectonics on a sphere [J]. Nature, 1967, 216(5122): 1276–1280. doi: 10.1038/2161276a0
    [13]
    MORGAN W J. Rises, trenches, great faults, and crustal blocks [J]. Journal of Geophysical Research: Planets, 1968, 73(6): 1959–1982. doi: 10.1029/JB073i006p01959
    [14]
    WILSON J T. A new class of faults and their bearing on continental drift [J]. Nature, 1965, 207(4995): 343–347. doi: 10.1038/207343a0
    [15]
    GUPTA H K. Encyclopedia of solid Earth geophysics [M]. Dordrecht: Springer, 2011.
    [16]
    霍睿智, 贺端威. 基于岩浆凝固的地壳动力学研究 [J]. 高压物理学报, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599

    HUO R Z, HE D W. Crustal dynamics based on magma solidification [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599
    [17]
    LAY T, HERNLUND J, BUFFETT B A. Core-mantle boundary heat flow [J]. Nature Geoscience, 2008, 1(1): 25–32. doi: 10.1038/ngeo.2007.44
    [18]
    PYLE D M. Mass and energy budgets of explosive volcanic eruptions [J]. Geophysical Research Letters, 1995, 22(5): 563–566. doi: 10.1029/95GL00052
    [19]
    NAKAMURA K. Preliminary estimate of global volcanic production rate [M]//COLP J L, FURUMOTO A S. Proceeding of A United States-Japan Cooperative Science Seminar of the Utilization of Volcanic Energy. Hawaii: University of Hawaii, 1974.
    [20]
    李玉锁. 火山喷发机制与预报 [M]. 北京: 地震出版社, 1998: 15–21.

    LI Y S. Mechanism and prediction of volcanic eruption [M]. Beijing: Seismological Press, 1998: 15–21.
    [21]
    王维勇. 地热基础理论研究 [M]. 北京: 地质出版社, 1982: 31–44.

    WANG W Y. Geothermal basic theory research [M]. Beijing: Geological Publishing House, 1982: 31–44.
    [22]
    LEE W H K. On the global variations of terrestrial heat-flow [J]. Physics of the Earth and Planetary Interiors, 1970, 2(5): 332–341. doi: 10.1016/0031-9201(69)90026-0
    [23]
    WILLIAMS D L, VON HERZEN R P. Heat loss from the Earth: new estimate [J]. Geology, 1974, 2(7): 327–328. doi: 10.1130/0091-7613(1974)2<327:HLFTEN>2.0.CO;2
    [24]
    CHAPMAN D S, POLLACK H N. Global heat flow: a new look [J]. Earth and Planetary Science Letters, 1975, 28(1): 23–32. doi: 10.1016/0012-821X(75)90069-2
    [25]
    LANGSETH M G, ANDERSON R N. Correction [to “The mechanisms of heat transfer through the floor of the Indian Ocean”] [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B3): 1139–1140. doi: 10.1029/JB084iB03p01139
    [26]
    DAVIES G F. Review of oceanic and global heat flow estimates [J]. Reviews of Geophysics, 1980, 18(3): 718–722. doi: 10.1029/RG018i003p00718
    [27]
    SCLATER J G, JAUPART C, GALSON D. The heat flow through oceanic and continental crust and the heat loss of the Earth [J]. Reviews of Geophysics, 1980, 18(1): 269–311. doi: 10.1029/RG018i001p00269
    [28]
    POLLACK H N, HURTER S J, JOHNSON J R. Heat flow from the Earth’s interior: analysis of the global data set [J]. Reviews of Geophysics, 1993, 31(3): 267–280. doi: 10.1029/93RG01249
    [29]
    JAUPART C, LABROSSE S, MARECHAL J C. Temperatures, heat and energy in the mantle of the Earth [M]//SCHUBERT G. Treatise on Geophysics. Amsterdam: Elsevier, 2007: 264–276.
    [30]
    DAVIES J H, DAVIES D R. Earth’s surface heat flux [J]. Solid Earth, 2010, 1(1): 5–24. doi: 10.5194/se-1-5-2010
    [31]
    DAVIES J H. Global map of solid Earth surface heat flow [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4608–4622. doi: 10.1002/ggge.20271
    [32]
    MARESCHAL J C, JAUPART C, PHANEUF C, et al. Geoneutrinos and the energy budget of the Earth [J]. Journal of Geodynamics, 2012, 54: 43–54. doi: 10.1016/j.jog.2011.10.005
    [33]
    AREVALO R Jr, MCDONOUGH W F, LUONG M. The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution [J]. Earth and Planetary Science Letters, 2009, 278(3/4): 361–369. doi: 10.1016/j.jpgl.2008.12.023
    [34]
    DRISCOLL P, BERCOVICI D. On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity [J]. Physics of the Earth and Planetary Interiors, 2014, 236: 36–51. doi: 10.1016/j.pepi.2014.08.004
    [35]
    HU S, HE H C, JI J L, et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5 [J]. Nature, 2021, 600(7887): 49–53. doi: 10.1038/s41586-021-04107-9
    [36]
    LI Q L, ZHOU Q, LIU Y, et al. Two billion-year-old volcanism on the Moon from Chang’e-5 basalts [J]. Nature, 2021, 600(7887): 54–58. doi: 10.1038/s41586-021-04100-2
    [37]
    NAKAGAWA T, TACKLEY P J. Influence of magmatism on mantle cooling, surface heat flow and Urey ratio [J]. Earth and Planetary Science Letters, 2012, 329/330: 1–10. doi: 10.1016/j.jpgl.2012.02.011
    [38]
    VACQUIER V. A theory of the origin of the Earth’s internal heat [J]. Tectonophysics, 1998, 291(1): 1–7. doi: 10.1016/S0040-1951(98)00026-2
    [39]
    SAKAMAKI T, OHTANI E, URAKAWA S, et al. Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method [J]. Earth and Planetary Science Letters, 2009, 287(3/4): 293–297. doi: 10.1016/j.jpgl.2009.07.030
    [40]
    SUZUKI A, OHTANI E. Density of peridotite melts at high pressure [J]. Physics and Chemistry of Minerals, 2003, 30(8): 449–456. doi: 10.1007/s00269-003-0322-6
    [41]
    OHTANI E, MAEDA M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle [J]. Earth and Planetary Science Letters, 2001, 193(1/2): 69–75. doi: 10.1016/S0012-821X(01)00505-2
    [42]
    MASSONNE H J, WILLNER A P, GERYA T. Densities of metapelitic rocks at high to ultrahigh pressure conditions: what are the geodynamic consequences? [J]. Earth and Planetary Science Letters, 2007, 256(1/2): 12–27. doi: 10.1016/j.jpgl.2007.01.013
    [43]
    PAN B B, CUI W C. An overview of buckling and ultimate strength of spherical pressure hull under external pressure [J]. Marine Structures, 2010, 23(3): 227–240. doi: 10.1016/j.marstruc.2010.07.005
    [44]
    JI S C, WANG Q, SALISBURY M H. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio [J]. Tectonophysics, 2009, 463(1/2/3/4): 15–30. doi: 10.1016/j.tecto.2008.09.007
    [45]
    KLEIN C, CARMICHAEL R S. Rock. Encyclopedia Britannica [M/OL] (2021-05-07)[2021-11-01]. https://www.britannica.com/science/rock-geology.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(774) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return