Citation: | XIONG Heng, MA Yuhong, SI Bowen, XIAO Gesheng, SHU Xuefeng. Mechanical Properties of Electronic Interconnected Conductive Adhesive and Drop Impact Behavior of Adhesive Bonding Point[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034103. doi: 10.11858/gywlxb.20210902 |
[1] |
TUNTHAWIROON P, KANLAYASIRI K. Effects of Ag contents in Sn-xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1696–1704. doi: 10.1016/S1003-6326(19)65076-4
|
[2] |
ZHANG S Y, QI X Q, YANG M, et al. A study on the resistivity and mechanical properties of modified nano-Ag coated Cu particles in electrically conductive adhesives [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9171–9183. doi: 10.1007/s10854-019-01246-8
|
[3] |
ZHANG L, SU Y, DAI Y Q, et al. Effect of the silver with different morphologies on the performance of electrically conductive adhesives [J]. Rare Metal Materials and Engineering, 2020, 49(5): 1526–1532.
|
[4] |
张小敏, 李起龙, 杜海涛, 等. 镀银铜粉导电胶制备及表征 [J]. 高校化学工程学报, 2020, 34(4): 1069–1075. doi: 10.3969/j.issn.1003-9015.2020.04.029
ZHANG X M, LI Q L, DU H T, et al. Preparation and characterization of ultrafine silver-coated copper powder and electrical conductive adhesives [J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(4): 1069–1075. doi: 10.3969/j.issn.1003-9015.2020.04.029
|
[5] |
ARADHANA R, MOHANTY S, NAYAK S K. A review on epoxy-based electrically conductive adhesives [J]. International Journal of Adhesion and Adhesives, 2020, 99: 102596. doi: 10.1016/j.ijadhadh.2020.102596
|
[6] |
WU M L, LAN J S. Reliability and failure analysis of SAC 105 and SAC 1205N lead-free solder alloys during drop test events [J]. Microelectronics Reliability, 2018, 80: 213–222. doi: 10.1016/j.microrel.2017.12.013
|
[7] |
WANG X Q, GAN W P, GE T T, et al. Effect of tetraethylenepentamine on silver conductive adhesive [J]. JOM, 2018, 70(9): 1800–1804. doi: 10.1007/s11837-018-2939-4
|
[8] |
ZHAN H J, GUO J Y, YANG X Z, et al. Silver frameworks based on self-sintering silver micro-flakes and its application in low temperature curing conductive pastes [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(24): 21343–21354. doi: 10.1007/s10854-019-02511-6
|
[9] |
SU Y, ZHANG L, LIAO B, et al. Simultaneous improvement of the electrical conductivity and mechanical properties via double-bond introduction in the electrically conductive adhesives [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8923–8932. doi: 10.1007/s10854-020-03427-2
|
[10] |
SPRINGER M, BOSCO N. Linear viscoelastic characterization of electrically conductive adhesives used as interconnect in photovoltaic modules [J]. Progress in Photovoltaics: Research and Applications, 2020, 28(7): 659–681. doi: 10.1002/pip.3257
|
[11] |
杨雪霞, 肖革胜, 树学峰. 板级跌落冲击载荷下无铅焊点形状对BGA封装可靠性的影响 [J]. 振动与冲击, 2013, 32(1): 104–107. doi: 10.3969/j.issn.1000-3835.2013.01.022
YANG X X, XIAO G S, SHU X F. Effects of solder joint shapes on reliability of BGA packages under board level drop impact loads [J]. Journal of Vibration and Shock, 2013, 32(1): 104–107. doi: 10.3969/j.issn.1000-3835.2013.01.022
|
[12] |
TAN A T, TAN A W, YUSOF F. Influence of high-power-low-frequency ultrasonic vibration time on the microstructure and mechanical properties of lead-free solder joints [J]. Journal of Materials Processing Technology, 2016, 238: 8–14. doi: 10.1016/j.jmatprotec.2016.06.036
|
[13] |
HE X, YAO Y. A dislocation density based viscoplastic constitutive model for lead free solder under drop impact [J]. International Journal of Solids and Structures, 2017, 120: 236–244. doi: 10.1016/j.ijsolstr.2017.05.005
|
[14] |
LONG X, XU J M, WANG S B, et al. Understanding the impact response of lead-free solder at high strain rates [J]. International Journal of Mechanical Sciences, 2020, 172: 105416. doi: 10.1016/j.ijmecsci.2020.105416
|
[15] |
余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011.
|
[16] |
PARK R. State of the art report ductility evaluation from laboratory and analytical testing [C]//Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo, 1988: 605−616.
|
[17] |
JEDEL Solid State Technology Association. JESD22-B111 board level drop test method of components for handheld electronic products [S]. Arlington: JEDEL Solid State Technology Association, 2003.
|
[18] |
樊泽瑞. POP封装板级跌落可靠性研究 [D]. 广州: 华南理工大学, 2012.
FAN Z R. Research on reliability of board level package-on-package in drop impact [D]. Guangzhou: South China University of Technology, 2012.
|
[19] |
LAI Y S, YANG P C, YEH C L. Effects of different drop test conditions on board-level reliability of chip-scale packages [J]. Microelectronics Reliability, 2008, 48(2): 274–281. doi: 10.1016/j.microrel.2007.03.005
|
[20] |
吉新阔, 肖革胜, 刘二强, 等. 高温下不同银含量微电子胶连点的力学性能及膨胀系数不匹配热应力 [J]. 复合材料学报, 2017, 34(11): 2455–2462. doi: 10.13801/j.cnki.fhclxb.20170308.002
JI X K, XIAO G S, LIU E Q, et al. High-temperature mechanical properties and thermal mismatch stress of conductive adhesive with different silver contents in flip chip packaging [J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2455–2462. doi: 10.13801/j.cnki.fhclxb.20170308.002
|
[1] | GAO Linyu, DU Shiyu, CHANG Hui, ZHANG Tuanwei, WANG Zhihua. Strain-rate and temperature dependent compressive deformation behavior of CrCoNiSi0.3 medium-entropy alloy[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251047 |
[2] | CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742 |
[3] | LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702 |
[4] | SHI Jingfu, YU Dong, XU Huadong, LIU Lei, MIAO Changqing. Strain Rate Effect of UHMWPE and Its Influence on Hypervelocity Impact Performance[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034101. doi: 10.11858/gywlxb.20220666 |
[5] | WEN Zhen, ZHANG Guoliang, JIANG Qi, LI Yongcun, GUO Zhangxin, LUAN Yunbo. Mechanical Property and De-Icing Function of Carbon Fibre-Hand-Torn Steel Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054101. doi: 10.11858/gywlxb.20230661 |
[6] | YANG Zhengqing, LUAN Yunbo, ZHANG Juqi, WEN Zhen, WANG Wei, LI Mingzhen, LI Yongcun. Design and Mechanical Properties of Short Carbon Fiber Reinforced Biomimetic Materials[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639 |
[7] | HUANG Shanxiu, CHEN Xiaoyang, ZHANG Chuanxiang, GUO Jiaqi. Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654 |
[8] | WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain Rate Dependent Constitutive Model of Rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024205. doi: 10.11858/gywlxb.20210815 |
[9] | LEI Jingfa, XUAN Yan, LIU Tao, JIANG Xiquan, DUAN Feiya, WEI Zhan. Experiments of Dynamic Tensile Properties of a Polyvinyl Chloride Elastomer[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034101. doi: 10.11858/gywlxb.20200627 |
[10] | WANG Zihao, ZHENG Hang, WEN Heming. Determination of the Mechanical Properties of Metals at Very High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794 |
[11] | ZHANG Feipeng, SHI Jiali, ZHANG Jingwen, BAO Lihong, QIN Guoqiang, ZHANG Guanglei, YANG Xinyu, ZHANG Jiuxing. Elastic and Mechanical Properties of Rare Earth Boride LaB6 Crystalline Material[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 022201. doi: 10.11858/gywlxb.20180668 |
[12] | ZHENG Jin-Yang, CUI Tian-Cheng, GU Chao-Hua, ZHANG Xin, FU Hai-Long. Effects of High Pressure Hydrogen on Mechanical Properties of 6061 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 505-510. doi: 10.11858/gywlxb.2017.05.001 |
[13] | WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.00.003 |
[14] | WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.04.003 |
[15] | MIAO Hong, ZUO Dun-Wen, ZHANG Rui-Hong. Microstructure and Mechanical Properties of Internal Thread during Cold Extrusion for Q460 High Strength Steel[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 337-342. doi: 10.11858/gywlxb.2013.03.004 |
[16] | WANG Hai-Yan, LIU Lin, CHEN Yan, ZHAO Jun, LIU Jian-Hua, ZHANG Rui-Jun. Effects of High Pressure Treatment on Micro-Mechanical Properties of 7075 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 768-772. doi: 10.11858/gywlxb.2013.05.018 |
[17] | CHEN Ding-Ding, LU Fang-Yun, LIN Yu-Liang, JIANG Bang-Hai. Effects of Strain Rate and Temperature on Compressive Properties of an Aluminized PBX[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 361-366. doi: 10.11858/gywlxb.2013.03.007 |
[18] | ZHONG Wei-Zhou, SONG Shun-Cheng, XIE Ruo-Ze, HUANG Xi-Cheng. Experimental Research on Compression Mechanical Properties of Ta-10W[J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 49-54 . doi: 10.11858/gywlxb.2010.01.009 |
[19] | LI Mao-Sheng, WANG Zheng-Yan, CHEN Dong-Quan, WANG Xiao-Sha. The Dependence of Constitutive Model on the Density, Temperature, Pressure and Strain Rate[J]. Chinese Journal of High Pressure Physics, 1992, 6(1): 54-57 . doi: 10.11858/gywlxb.1992.01.008 |
[20] | YU Wan-Rui. Molecular Dynamics Studies of Material Behavior at High Strain Rates[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 143-147 . doi: 10.11858/gywlxb.1989.02.006 |