Citation: | TAN Xueming, GUO Weiguo. High-Temperature and High-Speed Synchronous Ballistic Impact Test Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043301. doi: 10.11858/gywlxb.20210900 |
[1] |
GUPTA P K, IQBAL M A, MOHAMMAD Z, et al. Energy absorption in thin metallic targets subjected to oblique projectile impact: a numerical study [J]. Thin-Walled Structures, 2018, 126: 58–67. doi: 10.1016/j.tws.2017.08.005
|
[2] |
IQBAL M A, GUPTA P K, DEORE V S, et al. Effect of target span and configuration on the ballistic limit [J]. International Journal of Impact Engineering, 2012, 42: 11–24. doi: 10.1016/j.ijimpeng.2011.10.004
|
[3] |
邹品. GH4169高温动态本构模型与高速冲击性能研究 [D]. 南京: 南京航空航天大学, 2017: 34−36.
ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 34−36.
|
[4] |
郑百林, 杨彪, 刘焦, 等. 一种用于高温条件下的弹道冲击实验装置: CN201810600720. X [P]. 2018−11−30.
ZHENG B L, YANG B, LIU J, et al. Ballistic impact experimental device applied to high temperature condition: CN201810600720. X [P]. 2018−11−30.
|
[5] |
LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. doi: 10.1016/j.ijimpeng.2018.12.012
|
[6] |
刘焦, 郑百林, 杨彪, 等. 镍基合金薄板不同温度下的弹道冲击行为 [J]. 航空材料学报, 2019, 39(1): 79–88. doi: 10.11868/j.issn.1005-5053.2018.000045
LIU J, ZHENG B L, YANG B, et al. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures [J]. Journal of Aeronautical Materials, 2019, 39(1): 79–88. doi: 10.11868/j.issn.1005-5053.2018.000045
|
[7] |
YANG Y, XU F, GAO X Y, et al. Impact resistance of 2D plain-woven C/SiC composites at high temperature [J]. Materials & Design, 2016, 90: 635–641. doi: 10.1016/j.matdes.2015.11.024
|
[8] |
ERICE B, PÉREZ-MARTÍN M J, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. doi: 10.1016/j.ijimpeng.2014.02.007
|
[9] |
XIE W H, MENG S H, DING L, et al. High velocity impact tests on high temperature carbon-carbon composites [J]. Composites Part B: Engineering, 2016, 98: 30–38. doi: 10.1016/j.compositesb.2016.05.031
|
[10] |
丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望 [J]. 航空学报, 2018, 39(1): 021201. doi: 10.7527/S1000-6893.2017.021201
DING J H, LI H, BIAN T J, et al. Electroplasticity and electrically-assisted forming: a critical review [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021201. doi: 10.7527/S1000-6893.2017.021201
|
[11] |
ZHONG L P, SI J Y, ZHENG Z Q. Effect of temperature on impact properties of ZA27 alloy [J]. Advanced Materials Research, 2012, 476/478: 75–80. doi: 10.4028/www.scientific.net/AMR.476-478.75
|
[12] |
ROJACZ H, HUTTERER M, WINKELMANN H. High temperature single impact studies on material deformation and fracture behaviour of metal matrix composites and steels [J]. Materials Science and Engineering: A, 2013, 562: 39–45. doi: 10.1016/j.msea.2012.11.030
|
[13] |
TAN X M, GUO W G, GAO X S, et al. A new technique for conducting split Hopkinson tensile bar test at elevated temperatures [J]. Experimental Techniques, 2017, 41(2): 191–201. doi: 10.1007/s40799-017-0167-4
|
[14] |
WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. doi: 10.1016/j.ijplas.2014.08.017
|
[15] |
苏红星, 赵俊利, 彭双志. 气体炮弹丸初速的影响因素分析 [J]. 弹箭与制导学报, 2018, 38(1): 105–108, 113. doi: 10.15892/j.cnki.djzdxb.2018.01.025
SU H X, ZHAO J L, PENG S Z. Analysis of the influencing factors of the initial velocity of gas gun projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 105–108, 113. doi: 10.15892/j.cnki.djzdxb.2018.01.025
|
[16] |
王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究 [J]. 航空学报, 2013, 34(4): 946–953. doi: 10.7527/S1000-6893.2013.0155
WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 946–953. doi: 10.7527/S1000-6893.2013.0155
|
[17] |
ERICE B, GÁLVEZ F. A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion [J]. International Journal of Solids and Structures, 2014, 51(1): 93–110. doi: 10.1016/j.ijsolstr.2013.09.015
|
[18] |
WANG Y, SHAO W Z, ZHEN L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. Journal of Alloys and Compounds, 2009, 471(1/2): 331–335. doi: 10.1016/j.jallcom.2008.03.082
|
[19] |
李胡燕. GH4169镍基高温合金的组织和性能研究 [D]. 上海: 东华大学, 2014.
LI H Y. Study of microstructures and properties of GH4169 superalloy [D]. Shanghai: Donghua University, 2014.
|