Citation: | GUO Jing, SUN Liling. High Pressure Studies on Superconductivity of Strongly Correlated Electron Systems[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 010101. doi: 10.11858/gywlxb.20210889 |
[1] |
罗习刚, 吴涛, 陈仙辉. 非常规超导体及其物性 [J]. 物理, 2017, 46(8): 499–513. doi: 10.7693/wl20170802
LUO X G, WU T, CHEN X H. Unconventional superconductors and their physical properties [J]. Physics, 2017, 46(8): 499–513. doi: 10.7693/wl20170802
|
[2] |
STEWART G R. Unconventional superconductivity [J]. Advances in Physics, 2017, 66(1/2): 75–196.
|
[3] |
杨义峰. 重费米子材料中的反常物性 [J]. 物理, 2014, 43(2): 80–87. doi: 10.7693/wl20140201
YANG Y F. Anomalous properties of heavy fermion materials [J]. Physics, 2014, 43(2): 80–87. doi: 10.7693/wl20140201
|
[4] |
沈斌, 袁辉球. 磁性量子相变 [J]. 物理, 2020, 49(9): 570–578. doi: 10.7693/wl20200901
SHEN B, YUAN H Q. Magnetic quantum phase transitions [J]. Physics, 2020, 49(9): 570–578. doi: 10.7693/wl20200901
|
[5] |
焦琳. 重费米子超导 [J]. 物理, 2020, 49(9): 586–594. doi: 10.7693/wl20200903
JIAO L. Heavy fermion superconductors [J]. Physics, 2020, 49(9): 586–594. doi: 10.7693/wl20200903
|
[6] |
PROUST C, TAILLEFER L. The remarkable underlying ground states of cuprate superconductors [J]. Annual Review of Condensed Matter Physics, 2019, 10: 409–429. doi: 10.1146/annurev-conmatphys-031218-013210
|
[7] |
BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity [J]. Physical Review, 1957, 108(5): 1175–1204. doi: 10.1103/PhysRev.108.1175
|
[8] |
STEGLICH F, AARTS J, BREDL C D, et al. Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2 [J]. Physical Review Letters, 1979, 43(25): 1892–1896. doi: 10.1103/PhysRevLett.43.1892
|
[9] |
BEDNORZ J G, MÜLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189–193.
|
[10] |
CHU C W, GAO L, CHEN F, et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high-pressure [J]. Nature, 1993, 365(6444): 323–325. doi: 10.1038/365323a0
|
[11] |
SCHILLING A, CANTONI M, GUO J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system [J]. Nature, 1993, 363(6424): 56–58. doi: 10.1038/363056a0
|
[12] |
GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164-K in HgBa2Ca m–1Cu mO2 m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures [J]. Physical Review B, 1994, 50(6): 4260–4263. doi: 10.1103/PhysRevB.50.4260
|
[13] |
ORENSTEIN J, MILLIS A J. Advances in the physics of high-temperature superconductivity [J]. Science, 2000, 288(5465): 468–474. doi: 10.1126/science.288.5465.468
|
[14] |
DAMASCELLI A, HUSSAIN Z, SHEN Z X. Angle-resolved photoemission studies of the cuprate superconductors [J]. Reviews of Modern Physics, 2003, 75(2): 473–541. doi: 10.1103/RevModPhys.75.473
|
[15] |
NORMAN M R, PÉPIN C. The electronic nature of high temperature cuprate superconductors [J]. Reports on Progress in Physics, 2003, 66(10): 1547–1610. doi: 10.1088/0034-4885/66/10/R01
|
[16] |
FISCHER Ø, KUGLER M, MAGGIO-APRILE I, et al. Scanning tunneling spectroscopy of high-temperature superconductors [J]. Reviews of Modern Physics, 2007, 79(1): 353–419. doi: 10.1103/RevModPhys.79.353
|
[17] |
MENG J Q, LIU G D, ZHANG W T, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor [J]. Nature, 2009, 462(7271): 335–338. doi: 10.1038/nature08521
|
[18] |
ARMITAGE N P, FOURNIER P, GREENE R L. Progress and perspectives on electron-doped cuprates [J]. Reviews of Modern Physics, 2010, 82(3): 2421–2487. doi: 10.1103/RevModPhys.82.2421
|
[19] |
WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Physical Review Letters, 1987, 58(9): 908–910. doi: 10.1103/PhysRevLett.58.908
|
[20] |
BARIŠIĆ N, CHAN M K, LI Y, et al. Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12235–12240. doi: 10.1073/pnas.1301989110
|
[21] |
CHU C W, DENG L Z, LV B. Hole-doped cuprate high temperature superconductors [J]. Physica C: Superconductivity and its Applications, 2015, 514: 290–313. doi: 10.1016/j.physc.2015.02.047
|
[22] |
BOŽOKVIĆ I, HE X, WU J, et al. Dependence of the critical temperature in overdoped copper oxides on superfluid density [J]. Nature, 2016, 536(7616): 309–311. doi: 10.1038/nature19061
|
[23] |
GREENE R L, MANDAL P R, PONIATOWSKI N R, et al. The strange metal state of the electron-doped cuprates [J]. Annual Review of Condensed Matter Physics, 2020, 11: 213–229. doi: 10.1146/annurev-conmatphys-031119-050558
|
[24] |
KAMIHARA Y, WATANABE T, HOSONO H, et al. Iron-based layered superconductor La[O1– xF x]FeAs (x=0.05–0.12) with Tc=26 K [J]. Journal of the American Chemical Society, 2008, 130(11): 3296–3297. doi: 10.1021/ja800073m
|
[25] |
MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
|
[26] |
FLORES-LIVAS J A, BOERI L, SANNA A, et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials [J]. Physics Reports, 2020, 856: 1–78. doi: 10.1016/j.physrep.2020.02.003
|
[27] |
SCHILLING J S. What high pressure studies have taught us about high-temperature superconductivity [M]//HOCHHEIMER H D, KUCHTA B, DORHOUT P K, et al. Frontiers of High Pressure Research Ⅱ: Application of High Pressure to Low-Dimensional Novel Electronic Materials. Dordrecht: Springer, 2001: 345−360.
|
[28] |
CHEN Y, WENG Z F, MICHAEL S, et al. High-pressure studies on heavy fermion systems [J]. Chinese Physics B, 2016, 25(7): 077401. doi: 10.1088/1674-1056/25/7/077401
|
[29] |
衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究 [J]. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
YI W, WU Q, SUN L L. Superconductivities of pressurized iron pnictide superconductors [J]. Acta Physica Sinica, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
|
[30] |
郭静, 吴奇, 孙力玲. 高压下的铁基超导体: 现象与物理 [J]. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
GUO J, WU Q, SUN L L. Pressure-induced phenomena and physics in iron-based superconductors [J]. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
|
[31] |
GATI E, XIANG L, BUD’KO S L, et al. Hydrostatic and uniaxial pressure tuning of iron-based superconductors: insights into superconductivity, magnetism, nematicity, and collapsed tetragonal transitions [J]. Annalen der Physik, 2020, 532(10): 2000248. doi: 10.1002/andp.202000248
|
[32] |
程金光, 孙建平. 铁硒基超导体的高压研究进展 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(4): 047403.
CHENG J G, SUN J P. Pressure effects on the FeSe-based superconductors [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(4): 047403.
|
[33] |
DAGOTTO E. Colloquium: the unexpected properties of alkali metal iron selenide superconductors [J]. Reviews of Modern Physics, 2013, 85(2): 849–866. doi: 10.1103/RevModPhys.85.849
|
[34] |
CHU C W, LORENZ B. High pressure studies on Fe-pnictide superconductors [J]. Physica C: Superconductivity, 2009, 469(9): 385–395.
|
[35] |
SEFAT A S. Pressure effects on two superconducting iron-based families [J]. Reports on Progress in Physics, 2011, 74(12): 124502. doi: 10.1088/0034-4885/74/12/124502
|
[36] |
郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理 [J]. 物理学报, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
GUO J, SUN L L. Phenomena and findings in pressurized alkaline iron selenide superconductors [J]. Acta Physica Sinica, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
|
[37] |
杨义峰, 李宇. 重费米子超导与竞争序 [J]. 物理学报 2015, 64(21): 217401.
YANG Y F, LI Y. Heavy-fermion superconductivity and competing orders [J]. Acta Physica Sinica, 2015, 64(21): 217401.
|
[38] |
PFLEIDERER C. Superconducting phases of f-electron compounds [J]. Reviews of Modern Physics, 2009, 81(4): 1551–1624. doi: 10.1103/RevModPhys.81.1551
|
[39] |
WHITE B D, THOMPSON J D, MAPLE M B. Unconventional superconductivity in heavy-fermion compounds [J]. Physica C: Superconductivity and its Applications, 2015, 514: 246–278. doi: 10.1016/j.physc.2015.02.044
|
[40] |
谢武, 沈斌, 张勇军, 等. 重费米子材料与物理 [J]. 物理学报, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
XIE W, SHEN B, ZHANG Y J, et al. Heavy fermion materials and physics [J]. Acta Physica Sinica, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
|
[41] |
YUAN H Q, GROSCHE F M, DEPPE M, et al. Observation of two distinct superconducting phases in CeCu2Si2 [J]. Science, 2003, 302(5653): 2104–2107. doi: 10.1126/science.1091648
|
[42] |
BAUER E, SIGRIST M. Non-centrosymmetric superconductors: introduction and overview [M]. Berlin Heidelberg: Springer-Verlag, 2012: 35−79.
|
[43] |
SMIDMAN M, SALAMON M B, YUAN H Q, et al. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review [J]. Reports on Progress in Physics, 2017, 80(3): 036501. doi: 10.1088/1361-6633/80/3/036501
|
[44] |
GOR’KOV L P, RASHBA E I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state [J]. Physical Review Letters, 2001, 87(3): 037004. doi: 10.1103/PhysRevLett.87.037004
|
[45] |
SIGRIST M, AGTERBERG D F, FRIGERI P A, et al. Superconductivity in non-centrosymmetric materials [J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 536–540. doi: 10.1016/j.jmmm.2006.10.141
|
[46] |
EOM D, ISHIKAWA M, KITAGAWA J, et al. Suppression of antiferromagnetism by kondo effect and quantum critical behavior in CeCoGe3– xSi x (0≤x≤3) [J]. Journal of the Physical Society of Japan, 1998, 67(7): 2495–2500. doi: 10.1143/JPSJ.67.2495
|
[47] |
KAWAI T, MURANAKA H, MEASSON M A, et al. Magnetic and superconducting properties of CeTX3 (T: transition metal and X: Si and Ge) with non-centrosymmetric crystal structure [J]. Journal of the Physical Society of Japan, 2008, 77(6): 064716. doi: 10.1143/JPSJ.77.064716
|
[48] |
KIMURA N, MURO Y, AOKI H. Normal and superconducting properties of noncentrosymmetric heavy fermion CeRhSi3 [J]. Journal of the Physical Society of Japan, 2007, 76(5): 051010. doi: 10.1143/JPSJ.76.051010
|
[49] |
SUGITANI I, OKUDA Y, SHISHIDO H, et al. Pressure-induced heavy-fermion superconductivity in antiferromagnet CeIrSi3 without inversion symmetry [J]. Journal of the Physical Society of Japan, 2006, 75(4): 043703. doi: 10.1143/JPSJ.75.043703
|
[50] |
SETTAI R, SUGITANI I, OKUDA Y, et al. Pressure-induced superconductivity in CeCoGe3 without inversion symmetry [J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 844–846. doi: 10.1016/j.jmmm.2006.10.717
|
[51] |
HONDA F, BONALDE I, SHIMIZU K, et al. Pressure-induced superconductivity and large upper critical field in the noncentrosymmetric antiferromagnet CeIrGe3 [J]. Physical Review B, 2010, 81(14): 140507(R). doi: 10.1103/PhysRevB.81.140507
|
[52] |
KIMURA N, ITO K, SAITOH K, et al. Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3 [J]. Physical Review Letters, 2005, 95(24): 247004. doi: 10.1103/PhysRevLett.95.247004
|
[53] |
SETTAI R, OKUDA Y, SUGITANI I, et al. Non-centrosymmetric heavy fermion superconductivity in CeCoGe3 [J]. International Journal of Modern Physics B, 2007, 21(18/19): 3238–3245.
|
[54] |
KIMURA N, ITO K, AOKI H, et al. Extremely high upper critical magnetic field of the noncentrosymmetric heavy fermion superconductor CeRhSi3 [J]. Physical Review Letters, 2007, 98(19): 197001. doi: 10.1103/PhysRevLett.98.197001
|
[55] |
SETTAI R, MIYAUCHI Y, TAKEUCHI T, et al. Huge upper critical field and electronic instability in pressure-induced superconductor CeIrSi3 without inversion symmetry in the crystal structure [J]. Journal of the Physical Society of Japan, 2008, 77(7): 073705. doi: 10.1143/JPSJ.77.073705
|
[56] |
KAWAI T, NAKASHIMA M, OKUDA Y, et al. Pressure effect of electronic states in antiferromagnets CeTX3 (T: transition metal, X: Si and Ge) [J]. Journal of the Physical Society of Japan, 2007, 76(Suppl 1): 166–167.
|
[57] |
SUGAWARA T, IIDA H, AOKI H, et al. Absence of quantum criticality and presence of superconducting fluctuation in pressure-induced heavy-fermion superconductor CeRhSi3 [J]. Journal of the Physical Society of Japan, 2012, 81(5): 054711. doi: 10.1143/JPSJ.81.054711
|
[58] |
LANDAETA J F, SUBERO D, CATALÁ D, et al. Unconventional superconductivity and quantum criticality in the heavy fermions CeIrSi3 and CeRhSi3 [J]. Physical Review B, 2018, 97(10): 104513. doi: 10.1103/PhysRevB.97.104513
|
[59] |
WANG H H, GUO J, BAUER E D, et al. Superconductivity in pressurized CeRhGe3 and related noncentrosymmetric compounds [J]. Physical Review B, 2018, 97(6): 064514. doi: 10.1103/PhysRevB.97.064514
|
[60] |
PARK T, SIDOROV V A, RONNING F, et al. Isotropic quantum scattering and unconventional superconductivity [J]. Nature, 2008, 456(7220): 366–368. doi: 10.1038/nature07431
|
[61] |
SAADAOUI H, SALMAN Z, LUETKENS H, et al. The phase diagram of electron-doped La2− xCe xCuO4−δ [J]. Nature Communications, 2015, 6(1): 6041. doi: 10.1038/ncomms7041
|
[62] |
FUJITA M, KUBO T, KUROSHIMA S, et al. Magnetic and superconducting phase diagram of electron-doped Pr1− xLaCe xCuO4 [J]. Physical Review B, 2003, 67(1): 014514. doi: 10.1103/PhysRevB.67.014514
|
[63] |
DREW A J, NIEDERMAYER C, BAKER P J, et al. Coexistence of static magnetism and superconductivity in SmFeAsO1− xF x as revealed by muon spin rotation [J]. Nature Materials, 2009, 8(4): 310–314. doi: 10.1038/nmat2396
|
[64] |
CAI P, ZHOU X D, RUAN W, et al. Visualizing the microscopic coexistence of spin density wave and superconductivity in underdoped NaFe1− xCo xAs [J]. Nature Communications, 2013, 4(1): 1596. doi: 10.1038/ncomms2592
|
[65] |
DAI P C, HU J P, DAGOTTO E. Magnetism and its microscopic origin in iron-based high-temperature superconductors [J]. Nature Physics, 2012, 8(10): 709–718. doi: 10.1038/nphys2438
|
[66] |
WANG H H, GUO J, BAUER E D, et al. Anomalous connection between antiferromagnetic and superconducting phases in the pressurized noncentrosymmetric heavy-fermion compound CeRhGe3 [J]. Physical Review B, 2019, 99(2): 024504. doi: 10.1103/PhysRevB.99.024504
|
[67] |
ONISHI Y, MIYAKE K. Enhanced valence fluctuations caused by f-c coulomb interaction in Ce-based heavy electrons: possible origin of pressure-induced enhancement of superconducting transition temperature in CeCu2Ge2 and related compounds [J]. Journal of the Physical Society of Japan, 2000, 69(12): 3955–3964. doi: 10.1143/JPSJ.69.3955
|
[68] |
SEYFARTH G, RÜETSCHI A S, SENGUPTA K, et al. Heavy fermion superconductor CeCu2Si2 under high pressure: multiprobing the valence crossover [J]. Physical Review B, 2012, 85(20): 205105. doi: 10.1103/PhysRevB.85.205105
|
[69] |
WATANABE S, MIYAKE K. Roles of critical valence fluctuations in Ce- and Yb-based heavy fermion metals [J]. Journal of Physics: Condensed Matter, 2011, 23(9): 094217. doi: 10.1088/0953-8984/23/9/094217
|
[70] |
SARRAO J L, IMMER C D, FISK Z, et al. Physical properties of YbXCu4 (X=Ag, Au, Cd, Mg, Tl, and Zn) compounds [J]. Physical Review B, 1999, 59(10): 6855–6866. doi: 10.1103/PhysRevB.59.6855
|
[71] |
YAMAOKA H, IKEDA Y, JARRIGE I, et al. Role of valence fluctuations in the superconductivity of Ce122 compounds [J]. Physical Review Letters, 2014, 113(8): 086403. doi: 10.1103/PhysRevLett.113.086403
|
[72] |
YAMAOKA H, YAMAMOTO Y, SCHWIER E F, et al. Pressure and temperature dependence of the Ce valence and c-f hybridization gap in CeTIn5 (T=Co, Rh, Ir) heavy-fermion superconductors [J]. Physical Review B, 2015, 92(23): 235110. doi: 10.1103/PhysRevB.92.235110
|
[73] |
YAMAOKA H, JARRIGE I, TSUJII N, et al. Pressure and temperature dependences of the electronic structure of CeIrSi3 probed by resonant X-ray emission spectroscopy [J]. Journal of the Physical Society of Japan, 2011, 80(12): 124701. doi: 10.1143/JPSJ.80.124701
|
[74] |
BRUBAKER Z E, STILLWELL R L, CHOW P, et al. Pressure dependence of Ce valence in CeRhIn5 [J]. Journal of Physics: Condensed Matter, 2018, 30(3): 035601. doi: 10.1088/1361-648X/aa9e2b
|
[75] |
American Physical Society. Celebrating 125 years of The Physical Review [EB/OL]. [2021-10-11]. https://journals.aps.org/ 125years.
|
[76] |
ZAANEN J. Superconducting electrons go missing [J]. Nature, 2016, 536(7616): 282–283. doi: 10.1038/536282a
|
[77] |
VISHIK I M. Photoemission perspective on pseudogap, superconducting fluctuations, and charge order in cuprates: a review of recent progress [J]. Reports on Progress in Physics, 2018, 81(6): 062501. doi: 10.1088/1361-6633/aaba96
|
[78] |
DING H, YOKOYA T, CAMPUZANO J C, et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors [J]. Nature, 1996, 382(6586): 51–54. doi: 10.1038/382051a0
|
[79] |
ZAANEN J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals [J]. SciPost Physics, 2019, 6(5): 61. doi: 10.21468/SciPostPhys.6.5.061
|
[80] |
AGTERBERG D F, DAVIS J C S, EDKINS S D, et al. The physics of pair-density waves: cuprate superconductors and beyond [J]. Annual Review of Condensed Matter Physics, 2020, 11(1): 231–270. doi: 10.1146/annurev-conmatphys-031119-050711
|
[81] |
KEIMER B, KIVELSON S A, NORMAN M R, et al. From quantum matter to high-temperature superconductivity in copper oxides [J]. Nature, 2015, 518(7538): 179–186. doi: 10.1038/nature14165
|
[82] |
MIYAKAWA N, ZASADZINSKI J F, OONUKI S, et al. Implications of tunneling studies on high-Tc cuprates: superconducting gap and pseudogap [J]. Physica C: Superconductivity and its Applications, 2001, 364/365: 475–479. doi: 10.1016/S0921-4534(01)00824-3
|
[83] |
RENNER C, REVAZ B, GENOUD J Y, et al. Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ [J]. Physical Review Letters, 1998, 80(1): 149–152. doi: 10.1103/PhysRevLett.80.149
|
[84] |
EMERY V J, KIVELSON S A. Importance of phase fluctuations in superconductors with small superfluid density [J]. Nature, 1995, 374(6521): 434–437. doi: 10.1038/374434a0
|
[85] |
SAINI N L, AVILA J, BIANCONI A, et al. Topology of the pseudogap and shadow bands in Bi2Sr2CaCu2O8+δ at optimum doping [J]. Physical Review Letters, 1997, 79(18): 3467–3470. doi: 10.1103/PhysRevLett.79.3467
|
[86] |
HUSSEY N E, ABDEL-JAWAD M, CARRINGTON A, et al. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor [J]. Nature, 2003, 425(6960): 814–817. doi: 10.1038/nature01981
|
[87] |
PLATÉ M, MOTTERSHEAD J D F, ELFIMOV I S, et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ [J]. Physical Review Letters, 2005, 95(7): 077001. doi: 10.1103/PhysRevLett.95.077001
|
[88] |
VIGNOLLE B, CARRINGTON A, COOPER R A, et al. Quantum oscillations in an overdoped high-Tc superconductor [J]. Nature, 2008, 455(7215): 952–955. doi: 10.1038/nature07323
|
[89] |
KLOTZ S, SCHILLING J S. Hydrostatic pressure dependence of the superconducting transition temperature to 7 GPa in Bi2Ca1Sr2Cu2O8+ y as a function of oxygen content [J]. Physica C: Superconductivity, 1993, 209(4): 499–506. doi: 10.1016/0921-4534(93)90566-9
|
[90] |
CHEN X J, STRUZHKIN V V, HEMLEY R J, et al. High-pressure phase diagram of Bi2Sr2CaCu2O8+δ single crystals [J]. Physical Review B, 2004, 70(21): 214502. doi: 10.1103/PhysRevB.70.214502
|
[91] |
CHEN X J, STRUZHKIN V V, YU Y, et al. Enhancement of superconductivity by pressure-driven competition in electronic order [J]. Nature, 2010, 466(7309): 950–953. doi: 10.1038/nature09293
|
[92] |
DENG L Z, ZHENG Y P, WU Z, et al. Higher superconducting transition temperature by breaking the universal pressure relation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(6): 2004–2008. doi: 10.1073/pnas.1819512116
|
[93] |
GUO J, ZHOU Y Z, HUANG C, et al. Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor [J]. Nature Physics, 2020, 16(3): 295–300. doi: 10.1038/s41567-019-0740-0
|
[94] |
ZHOU Y Z, GUO J, CAI S, et al. Universal quantum transition from superconducting to insulating states in pressurized Bi2Sr2CaCu2O8+δ superconductors [EB/OL]. https://arxiv.org/abs/2012.07523.
|
[95] |
ZHANG J B, DING Y, CHEN C C, et al. Evolution of a novel ribbon phase in optimally doped Bi2Sr2CaCu2O8+δ at high pressure and its implication to high-Tc superconductivity [J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4182–4188. doi: 10.1021/acs.jpclett.8b01849
|
[96] |
GAO P W, SUN L L, NI N, et al. Pressure-induced superconductivity and its scaling with doping-induced superconductivity in the iron pnictide with skutterudite intermediary layers [J]. Advanced Materials, 2014, 26(15): 2346–2351. doi: 10.1002/adma.201305154
|
[97] |
LEE H, PARK E, PARK T, et al. Pressure-induced superconducting state of antiferromagnetic CaFe2As2 [J]. Physical Review B, 2009, 80(2): 024519. doi: 10.1103/PhysRevB.80.024519
|
[98] |
COLOMBIER E, BUD’KO S L, NI N, et al. Complete pressure-dependent phase diagrams for SrFe2As2 and BaFe2As2 [J]. Physical Review B, 2009, 79(22): 224518. doi: 10.1103/PhysRevB.79.224518
|
[99] |
KURITA N, KIMATA M, KODAMA K, et al. Phase diagram of pressure-induced superconductivity in EuFe2As2 probed by high-pressure resistivity up to 3.2 GPa [J]. Physical Review B, 2011, 83(21): 214513. doi: 10.1103/PhysRevB.83.214513
|
[100] |
ROTTER M, TEGEL M, JOHRENDT D. Superconductivity at 38 K in the iron arsenide (Ba1– xK x)Fe2As2 [J]. Physical Review Letters, 2008, 101(10): 107006. doi: 10.1103/PhysRevLett.101.107006
|
[101] |
NI N, ALLRED J M, CHAN B C, et al. High Tc electron doped Ca10(Pt3As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 superconductors with skutterudite intermediary layers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): E1019–E1026. doi: 10.1073/pnas.1110563108
|
[102] |
KUDO K, MIZUKAMI T, KITAHAMA Y, et al. Enhanced superconductivity up to 43 K by P/Sb doping of Ca1− xLa xFeAs2 [J]. Journal of the Physical Society of Japan, 2014, 83(2): 025001. doi: 10.7566/JPSJ.83.025001
|
[103] |
KATAYAMA N, KUDO K, ONARI S, et al. Superconductivity in Ca1– xLa xFeAs2: a novel 112-type iron pnictide with arsenic zigzag bonds [J]. Journal of the Physical Society of Japan, 2013, 82(12): 123702. doi: 10.7566/JPSJ.82.123702
|
[104] |
SAHA S R, DRYE T, GOH S K, et al. Segregation of antiferromagnetism and high-temperature superconductivity in Ca1− xLa xFe2As2 [J]. Physical Review B, 2014, 89(13): 134516. doi: 10.1103/PhysRevB.89.134516
|
[105] |
GATI E, KÖHLER S, GUTERDING D, et al. Hydrostatic-pressure tuning of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe1− xCo x)2As2 [J]. Physical Review B, 2012, 86(22): 220511(R). doi: 10.1103/PhysRevB.86.220511
|
[106] |
KAWASAKI S, MABUCHI T, MAEDA S, et al. Doping-enhanced antiferromagnetism in Ca1− xLa xFeAs2 [J]. Physical Review B, 2015, 92(18): 180508(R). doi: 10.1103/PhysRevB.92.180508
|
[107] |
JIANG S, LIU C, CAO H B, et al. Structural and magnetic phase transitions in Ca0.73La0.27FeAs2 with electron-overdoped FeAs layers [J]. Physical Review B, 2016, 93(5): 054522. doi: 10.1103/PhysRevB.93.054522
|
[108] |
ZHOU Y Z, JIANG S, WU Q, et al. Observation of a bi-critical point between antiferromagnetic and superconducting phases in pressurized single crystal Ca0.73La0.27FeAs2 [J]. Science Bulletin, 2017, 62(12): 857–862. doi: 10.1016/j.scib.2017.05.027
|
[109] |
ZHANG S C. A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism [J]. Science, 1997, 275(5303): 1089–1096. doi: 10.1126/science.275.5303.1089
|
[110] |
BANKS H B, BI W, SUN L, et al. Dependence of magnetic ordering temperature of doped and undoped EuFe2As2 on hydrostatic pressure to 0.8 GPa [J]. Physica C: Superconductivity and its Applications, 2011, 471(15/16): 476–479.
|
[111] |
JIANG S, XING H, XUAN G F, et al. Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1− xP x)2 [J]. Journal of Physics: Condensed Matter, 2009, 21(38): 382203. doi: 10.1088/0953-8984/21/38/382203
|
[112] |
REN Z, TAO Q, JIANG S, et al. Superconductivity induced by phosphorus doping and its coexistence with ferromagnetism in EuFe2(As0.7P0.3)2 [J]. Physical Review Letters, 2009, 102(13): 137002. doi: 10.1103/PhysRevLett.102.137002
|
[113] |
SUN L L, GUO J, CHEN G F, et al. Valence change of europium in EuFe2As1.4P0.6 and compressed EuFe2As2 and its relation to superconductivity [J]. Physical Review B, 2010, 82(13): 134509. doi: 10.1103/PhysRevB.82.134509
|
[114] |
GUO J, WU Q, FENG J, et al. Correlation between intercalated magnetic layers and superconductivity in pressurized EuFe2(As0.81P0.19)2 [J]. Europhysics Letters, 2015, 111(5): 57007. doi: 10.1209/0295-5075/111/57007
|
[115] |
HSU F C, LUO J Y, MAO H K, et al. Superconductivity in the PbO-type structure α-FeSe [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14262–14264. doi: 10.1073/pnas.0807325105
|
[116] |
IMAI T, AHILAN K, NING F L, et al. Why does undoped FeSe become a high-Tc superconductor under pressure? [J]. Physical Review Letters, 2009, 102(17): 177005. doi: 10.1103/PhysRevLett.102.177005
|
[117] |
SUN J P, MATSUURA K, YE G Z, et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe [J]. Nature Communications, 2016, 7(1): 12146. doi: 10.1038/ncomms12146
|
[118] |
LIU T J, HU J, QIAN B, et al. From (
|
[119] |
ZHANG P, YAJI K, HASHIMOTO T, et al. Observation of topological superconductivity on the surface of an iron-based superconductor [J]. Science, 2018, 360(6385): 182–186. doi: 10.1126/science.aan4596
|
[120] |
LIN G C, GUO J, SUN L L, et al. Correlation between Fermi surface reconstruction and superconductivity in pressurized FeTe0.55Se0.45 [J]. Physical Review B, 2020, 101(21): 214525. doi: 10.1103/PhysRevB.101.214525
|
[121] |
GUO J G, JIN S F, WANG G, et al. Superconductivity in the iron selenide K xFe2Se2 (0≤x≤1.0) [J]. Physical Review B, 2010, 82(18): 180520(R). doi: 10.1103/PhysRevB.82.180520
|
[122] |
FANG M H, WANG H D, DONG C H, et al. Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl, K) Fe xSe2 [J]. Europhysics Letters, 2011, 94(2): 27009. doi: 10.1209/0295-5075/94/27009
|
[123] |
WANG H D, DONG C H, LI Z J, et al. Superconductivity at 32 K and anisotropy in Tl0.58Rb0.42Fe1.72Se2 crystals [J]. Europhysics Letters, 2011, 93(4): 47004. doi: 10.1209/0295-5075/93/47004
|
[124] |
YAN X W, GAO M, LU Z Y, et al. Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor [J]. Physical Review B, 2011, 83(23): 233205. doi: 10.1103/PhysRevB.83.233205
|
[125] |
RICCI A, POCCIA N, CAMPI G, et al. Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused X-ray diffraction [J]. Physical Review B, 2011, 84(6): 060511(R). doi: 10.1103/PhysRevB.84.060511
|
[126] |
WANG Z, SONG Y J, SHI H L, et al. Microstructure and ordering of iron vacancies in the superconductor system K yFe xSe2 as seen via transmission electron microscopy [J]. Physical Review B, 2011, 83(14): 140505(R). doi: 10.1103/PhysRevB.83.140505
|
[127] |
CHEN F, XU M, GE Q Q, et al. Electronic identification of the parental phases and mesoscopic phase separation of K xFe2− ySe2 superconductors [J]. Physical Review X, 2011, 1(2): 021020. doi: 10.1103/PhysRevX.1.021020
|
[128] |
WANG C N, MARSIK P, SCHUSTER R, et al. Macroscopic phase segregation in superconducting K0.73Fe1.67Se2 as seen by muon spin rotation and infrared spectroscopy [J]. Physical Review B, 2012, 85(21): 214503. doi: 10.1103/PhysRevB.85.214503
|
[129] |
YUAN R H, DONG T, SONG Y J, et al. Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2 [J]. Scientific Reports, 2012, 2(1): 221. doi: 10.1038/srep00221
|
[130] |
LI W, DING H, LI Z, et al. KFe2Se2 is the parent compound of K-doped iron selenide superconductors [J]. Physical Review Letters, 2012, 109(5): 057003. doi: 10.1103/PhysRevLett.109.057003
|
[131] |
DING X X, FANG D L, WANG Z Y, et al. Influence of microstructure on superconductivity in K xFe2− ySe2 and evidence for a new parent phase K2Fe7Se8 [J]. Nature Communications, 2013, 4(1): 1897. doi: 10.1038/ncomms2913
|
[132] |
SUN L L, MAO X J, GUO J, et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides [J]. Nature, 2012, 483(7387): 67–69. doi: 10.1038/nature10813
|
[133] |
GU D C, WU Q, ZHOU Y Z, et al. Superconductivity in pressurized Rb0.8Fe2− ySe2− xTe x [J]. New Journal of Physics, 2015, 17(7): 073021. doi: 10.1088/1367-2630/17/7/073021
|
[134] |
GUO J, CHEN X J, DAI J H, et al. Pressure-driven quantum criticality in iron-selenide superconductors [J]. Physical Review Letters, 2012, 108(19): 197001. doi: 10.1103/PhysRevLett.108.197001
|
[135] |
YE F, BAO W, CHI S X, et al. High-pressure single crystal neutron scattering study of magnetic and Fe vacancy orders in (Tl, Rb)2Fe4Se5 superconductor [J]. Chinese Physics Letters, 2014, 31(12): 127401. doi: 10.1088/0256-307X/31/12/127401
|
[136] |
GAO P W, YU R, SUN L L, et al. Role of the 245 phase in alkaline iron selenide superconductors revealed by high-pressure studies [J]. Physical Review B, 2014, 89(9): 094514. doi: 10.1103/PhysRevB.89.094514
|
[137] |
MIZUGUCHI Y, HARA Y, DEGUCHI K, et al. Anion height dependence of Tc for the Fe-based superconductor [J]. Superconductor Science and Technology, 2010, 23(5): 054013. doi: 10.1088/0953-2048/23/5/054013
|
[138] |
WANG H H, GUO J, SHAO Y T, et al. Pressure effects on superconductivity and structural parameters of ThFeAsN [J]. Europhysics Letters, 2018, 123(6): 67004. doi: 10.1209/0295-5075/123/67004
|
[139] |
BERSUKER I B. The Jahn-Teller effect [M]. Cambridge: Cambridge University Press, 2006: 616.
|
[140] |
戴鹏程, 李世亮. 高温超导体的磁激发: 探寻不同体系铜氧化合物的共同特征 [J]. 物理, 2006, 35(10): 837–844. doi: 10.3321/j.issn:0379-4148.2006.10.007
DAI P C, LI S L. Magnetic excitations in high-temperature superconductors: search for universal features in different classes of copper oxides [J]. Physics, 2006, 35(10): 837–844. doi: 10.3321/j.issn:0379-4148.2006.10.007
|
[141] |
PARK T, THOMPSON J D. Magnetism and superconductivity in strongly correlated CeRhIn5 [J]. New Journal of Physics, 2009, 11(5): 055062. doi: 10.1088/1367-2630/11/5/055062
|