Volume 36 Issue 3
May. 2022
Turn off MathJax
Article Contents
ZHANG Chi, LI Haitao, MEI Zhiyuan, LI Jiebing, ZHENG Xinying. Effects of Typical Structural Parameters on Underwater Explosion Resistance of Girders[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035102. doi: 10.11858/gywlxb.20210881
Citation: ZHANG Chi, LI Haitao, MEI Zhiyuan, LI Jiebing, ZHENG Xinying. Effects of Typical Structural Parameters on Underwater Explosion Resistance of Girders[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035102. doi: 10.11858/gywlxb.20210881

Effects of Typical Structural Parameters on Underwater Explosion Resistance of Girders

doi: 10.11858/gywlxb.20210881
  • Received Date: 27 Sep 2021
  • Rev Recd Date: 29 Oct 2021
  • Accepted Date: 20 Dec 2021
  • Issue Publish Date: 30 May 2022
  • In order to improve the design level of anti-explosion capability of protective structure of ships, it is necessary to reveal the influence of changes in typical structural parameters of ships on their damage characteristics. The trapezoidal cross-section girder, of which the size and structural characteristics are close to those of a typical military ship the real ship is designed. The underwater explosion load of each calculation condition is obtained by using Geers-Hunter theoretical formula. Based on ABAQUS finite element numerical analysis method, the structural response characteristics of the girders with different parameters such as length, outer plate thickness, depth and width subjected to underwater explosion were compared and analyzed. A dimensionless structural strength factor that can characterize the influence of each typical structural parameter on the overall structural strength of the girder is proposed. The results show that the coupling between bubble pulsation and structure natural frequency leads to sagging deformation when the pulse duration of bubble is close to the natural frequency of the girder. The increase in the length causes the reduction in bending resistance of the structure. The initial hogging deformation increases slowly and the maximum sagging deformation increases significantly; the increase in the outer plate thickness, depth and width lead to the decrease in the initial hogging deformation and maximum sagging deformation of the structure during the response. The initial hogging deformation is less sensitive to the change of structural parameters than the maximum sagging deformation. The dimensionless structural strength factor proposed in the paper can characterize the overall strength of the girder structure.

     

  • loading
  • [1]
    刘丽滨, 李海涛, 刁爱民, 等. 水下爆炸下有限尺度平板的载荷特性及结构响应试验研究 [J]. 高压物理学报, 2018, 32(5): 055101.

    LIU L B, LI H T, DIAO A M, et al. Experimental investigation on load characteristics and structure response of finite-size plate subjected to underwater explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055101.
    [2]
    刘文思, 吴林杰, 侯代文, 等. 鱼雷近场爆炸对舰船不同结构的局部毁伤研究 [J]. 兵器装备工程学报, 2019, 40(10): 12–15. doi: 10.11809/bqzbgcxb2019.10.003

    LIU W S, WU L J, HOU D W, et al. Study on local damage of different structures of ships by torpedo near field explosion [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 12–15. doi: 10.11809/bqzbgcxb2019.10.003
    [3]
    贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402.

    HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402.
    [4]
    李海涛, 张振华, 牟金磊, 等. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性 [J]. 工程力学, 2019, 36(1): 238–247. doi: 10.6052/j.issn.1000-4750.2017.10.0779

    LI H T, ZHANG Z H, MU J L, et al. Hydro-elastic-plastic dynamic response of a ship hull girder subjected to underwater explosion: a simplified theoretical model [J]. Engineering Mechanics, 2019, 36(1): 238–247. doi: 10.6052/j.issn.1000-4750.2017.10.0779
    [5]
    HE Z H, CHEN Z H, JIANG Y B, et al. Effect of the standoff distance on hull structure damage subjected to near-field underwater explosion [J]. Marine Structure, 2020, 74: 102839.
    [6]
    刘文思, 陆越, 周庆飞, 等. 鱼雷近场爆炸复杂载荷对舰船毁伤模式 [J]. 兵工学报, 2021, 42(4): 842–890. doi: 10.3969/j.issn.1000-1093.2021.04.018

    LIU W S, LU Y, ZHOU Q F, et al. Complex load of torpedo near-field explosion and its damage mode to ships [J]. Acta Armamentarii, 2021, 42(4): 842–890. doi: 10.3969/j.issn.1000-1093.2021.04.018
    [7]
    张效慈. 水下爆炸试验模型律的若干问题 [J]. 船舶力学, 2009, 13(5): 783–787. doi: 10.3969/j.issn.1007-7294.2009.05.016

    ZHANG X C. Some problems for model law of underwater explosion tests [J]. Journal of Ship Mechanics, 2009, 13(5): 783–787. doi: 10.3969/j.issn.1007-7294.2009.05.016
    [8]
    张振华, 汪玉, 张立军, 等. 船体梁在水下近距爆炸作用下反直观动力行为的相似分析 [J]. 应用数学和力学, 2011, 32(12): 1391–1404. doi: 10.3879/j.issn.1000-0887.2011.12.001

    ZHANG Z H, WANG Y, ZHANG L J, et al. Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion [J]. Applied Mathematics and Mechanics, 2011, 32(12): 1391–1404. doi: 10.3879/j.issn.1000-0887.2011.12.001
    [9]
    WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse [J]. Marine Structures, 2014, 39: 90–117. doi: 10.1016/j.marstruc.2014.07.003
    [10]
    曾令玉, 蔡尚, 王诗平. 水下爆炸气泡对舰船冲击环境的影响 [J]. 中国舰船研究, 2018, 13(3): 66–71.

    ZENG L Y, CAI S, WANG S P. Effects of underwater explosion bubble on shock environment of warship [J]. Chinese Journal of Ship Research, 2018, 13(3): 66–71.
    [11]
    姚熊亮, 郭君, 曹宇, 等. 在水下爆炸冲击波作用下的新型冲击因子 [J]. 中国造船, 2008, 49(2): 52–60. doi: 10.3969/j.issn.1000-4882.2008.02.007

    YAO X L, GUO J, CAO Y, et al. A new impulsive factors on the underwater shock load [J]. Shipbuilding of China, 2008, 49(2): 52–60. doi: 10.3969/j.issn.1000-4882.2008.02.007
    [12]
    郭建军, 赵玉麟, 张皓, 等. 舰船水下爆炸冲击动弯矩工程化预报 [J]. 舰船科学技术, 2019, 41(1): 20–25. doi: 10.3404/j.issn.1672-7649.2019.01.004

    GUO J J, ZHAO Y L, ZHANG H, et al. Engineering forecast method of shock vibration bending moment of ships subjected to explosion load [J]. Ship Science and Technology, 2019, 41(1): 20–25. doi: 10.3404/j.issn.1672-7649.2019.01.004
    [13]
    HUNTER K S. Global-shape-function models of an underwater explosion bubble [D]. Colorado: University of Colorado, 2001.
    [14]
    GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601.
    [15]
    李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129.

    LI Y, WANG Y, WU W G, et al. Dynamic mechanical behavior and constitutive relation of the ship-built steel 907A [J]. Journal of Harbin Engineering University, 2015, 36(1): 127–129.
    [16]
    朱锡, 牟金磊, 洪江波, 等. 水下爆炸气泡脉动特性的试验研究 [J]. 哈尔滨工程大学学报, 2007, 28(4): 365–368. doi: 10.3969/j.issn.1006-7043.2007.04.001

    ZHU X, MU J L, HONG J B, et al. Experimental study of characters of bubble impulsion induced by underwater explosions [J]. Journal of Harbin Engineering University, 2007, 28(4): 365–368. doi: 10.3969/j.issn.1006-7043.2007.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views(1113) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return