Citation: | DENG Minjie, LIU Zhifang. Design and Crashworthiness Study Based on Horsetail Bionic Thin-Walled Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034202. doi: 10.11858/gywlxb.20210880 |
[1] |
XIE S C, JING K K, ZHOU H, et al. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact [J]. Composite Structures, 2020, 235: 111814. doi: 10.1016/j.compstruct.2019.111814
|
[2] |
XU X, ZHANG Y, CHEN X B, et al. Crushing behaviors of hierarchical sandwich-walled columns [J]. International Journal of Mechanical Sciences, 2019, 161/162: 105021. doi: 10.1016/j.ijmecsci.2019.105021
|
[3] |
ZAHRAN M S, XUE P, ESA M S, et al. A novel tailor-made technique for enhancing the crashworthiness by multi-stage tubular square tubes [J]. Thin-Walled Structures, 2018, 122: 64–82. doi: 10.1016/j.tws.2017.09.031
|
[4] |
XU X, ZHANG Y, WANG J, et al. Crashworthiness design of novel hierarchical hexagonal columns [J]. Composite Structures, 2018, 194: 36–48. doi: 10.1016/j.compstruct.2018.03.099
|
[5] |
PIRMOHAMMAD S, ESMAEILI-MARZDASHTI S. Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes [J]. Thin-Walled Structures, 2019, 139: 126–138. doi: 10.1016/j.tws.2019.03.004
|
[6] |
谭丽辉, 徐涛, 崔晓梅, 等. 带有圆弧形凹槽金属薄壁圆管抗撞性优化设计 [J]. 爆炸与冲击, 2014, 34(5): 547–553. doi: 10.11883/1001-1455(2014)05-0547-07
TAN L H, XU T, CUI X M, et al. Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations [J]. Explosion and Shock Waves, 2014, 34(5): 547–553. doi: 10.11883/1001-1455(2014)05-0547-07
|
[7] |
ROSSI A, FAWAZ Z, BEHDINAN K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes [J]. Thin-Walled Structures, 2005, 43(10): 1646–1661. doi: 10.1016/j.tws.2005.03.001
|
[8] |
YAMASHITA M, GOTOH M, SAWAIRI Y. Axial crush of hollow cylindrical structures with various polygonal cross-sections: numerical simulation and experiment [J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 59–64. doi: 10.1016/S0924-0136(03)00821-5
|
[9] |
ÁDÁNY S, VISY D. Global buckling of thin-walled simply supported columns: numerical studies [J]. Thin-Walled Structures, 2012, 54: 82–93. doi: 10.1016/j.tws.2012.02.001
|
[10] |
TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns [J]. Thin-Walled Structures, 2012, 51: 112–120. doi: 10.1016/j.tws.2011.10.005
|
[11] |
何强, 王勇辉, 史肖娜, 等. 引入Sierpinski层级特性的新型薄壁多胞管轴向冲击吸能特性 [J]. 爆炸与冲击, 2020, 40(12): 123101. doi: 10.11883/bzycj.2020-0055
HE Q, WANG Y H, SHI X N, et al. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact [J]. Explosion and Shock Waves, 2020, 40(12): 123101. doi: 10.11883/bzycj.2020-0055
|
[12] |
KASHANI M H, ALAVIJEH H S, AKBARSHAHI H, et al. Bitubular square tubes with different arrangements under quasi-static axial compression loading [J]. Materials & Design, 2013, 51: 1095–1103. doi: 10.1016/j.matdes.2013.04.084
|
[13] |
LIU W Y, LIN Z Q, WANG N L, et al. Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact [J]. Thin-Walled Structures, 2016, 100: 25–37. doi: 10.1016/j.tws.2015.11.016
|
[14] |
ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression [J]. Thin-Walled Structures, 2013, 68: 156–163. doi: 10.1016/j.tws.2013.03.014
|
[15] |
SHARIFI S, SHAKERI M, FAKHARI H E, et al. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load [J]. Thin-Walled Structures, 2015, 89: 42–53. doi: 10.1016/j.tws.2014.12.008
|
[16] |
杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure [J]. Explosion and Shock Waves, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
|
[17] |
HA N S, LU G X, XIANG X M. High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration [J]. International Journal of Mechanical Sciences, 2018, 148: 409–421. doi: 10.1016/j.ijmecsci.2018.08.041
|
[18] |
LIU Q, XU X Y, MA J B, et al. Lateral crushing and bending responses of CFRP square tube filled with aluminum honeycomb [J]. Composites Part B: Engineering, 2017, 118: 104–115. doi: 10.1016/j.compositesb.2017.03.021
|
[19] |
FU J, LIU Q, LIUFU K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
|
[20] |
WIERZBICKI T, BHAT S U, ABRAMOWICZ W, et al. Alexander revisited: a two folding elements model of progressive crushing of tubes [J]. International Journal of Solids and Structures, 1992, 29(24): 3269–3288. doi: 10.1016/0020-7683(92)90040-Z
|
[21] |
ZHANG X, ZHANG H. Axial crushing of circular multi-cell columns [J]. International Journal of Impact Engineering, 2014, 65: 110–125. doi: 10.1016/j.ijimpeng.2013.12.002
|
[22] |
HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
|
[23] |
SUN G Y, XU F X, LI G Y, et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness [J]. International Journal of Impact Engineering, 2014, 64: 62–74. doi: 10.1016/j.ijimpeng.2013.10.004
|