Volume 36 Issue 1
Jan 2022
Turn off MathJax
Article Contents
CHONG Tao, MO Jianjun, FU Hua, ZHENG Xianxu, LI Tao, ZHANG Xu. Dynamic Response of PBX-14 under Ramp Wave Compression up to 20 GPa[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014103. doi: 10.11858/gywlxb.20210877
Citation: CHONG Tao, MO Jianjun, FU Hua, ZHENG Xianxu, LI Tao, ZHANG Xu. Dynamic Response of PBX-14 under Ramp Wave Compression up to 20 GPa[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014103. doi: 10.11858/gywlxb.20210877

Dynamic Response of PBX-14 under Ramp Wave Compression up to 20 GPa

doi: 10.11858/gywlxb.20210877
  • Received Date: 13 Sep 2021
  • Rev Recd Date: 10 Oct 2021
  • The dynamic response of unreacted solid TATB-based explosive PBX-14 under ramp wave compression up to 20 GPa was obtained with the magnetically driven loading technique and laser interferometry technique. The pressure-relative specific volume relationship and dynamic parameters, such as the high-pressure sound velocity and particle velocity relationship cL=2.53+3.12up of PBX-14 under ramp wave compression from 0 to 20 GPa were calculated by the iterative Lagrange data processing method based on impedance matching modification. The one-dimensional hydrodynamic numerical simulation of this experimental process was carried out with the isentropic equation of state and dynamic parameters obtained from the experiment. The calculation results agree well with the experimental results, which verifies the correctness of the experimental method, data processing method, and selected physical models in this work.

     

  • loading
  • [1]
    GAO C, YANG L, ZENG Y Y, et al. Growth and characterization of β-RDX single crystal particles [J]. The Journal of Physical Chemistry C, 2017, 121(33): 17586–17594. doi: 10.1021/acs.jpcc.7b04285
    [2]
    陈朗, 王飞, 伍俊英, 等. 高密度压装炸药燃烧转爆轰研究 [J]. 含能材料, 2011, 19(6): 697–704. doi: 10.3969/j.issn.1006-9941.2011.06.022

    CHEN L, WANG F, WU J Y, et al. Investigation of the deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 697–704. doi: 10.3969/j.issn.1006-9941.2011.06.022
    [3]
    代晓淦, 申春迎, 文玉史. 模拟跌落撞击下PBX-2炸药的响应 [J]. 含能材料, 2011, 19(2): 209–212. doi: 10.3969/j.issn.1006-9941.2011.02.019

    DAI X G, SHEN C Y, WEN Y S. Reaction of PBX-2 explosive under simulated drop impact [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 209–212. doi: 10.3969/j.issn.1006-9941.2011.02.019
    [4]
    李涛, 胡海波, 尚海林, 等. 强约束球形装药反应裂纹传播和反应烈度表征实 [J]. 爆炸与冲击, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348

    LI T, HU H B, SHANG H L, et al. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348
    [5]
    HALL C A, ASAY J R, KNUDSON M D, et al, Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595.
    [6]
    BAER M R, HALL C A, GUSTAVSEN R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents [J]. Journal of Applied Physics, 2007, 101: 034906. doi: 10.1063/1.2399881
    [7]
    HARE D E, REISMAN D B, GARCIA F, et al. The isentrope of unreacted LX-04 to 170 kbar [C]//American Physical Society Topical Conference on Shock Compression of Condensed Matter. Portland: American Physical Society, 2003.
    [8]
    LEFRANOIS A, HARE D, EPLATTENIER P L, et al. Isentropic compression up to 200 kbars for LX-04, numerical simulations and comparison with experiments: UCRL-TR-219185 [R]. California: Lawrence Livermore National Laboratory, 2006.
    [9]
    HARE D E, FORBES J W, REISMAN D B, et al. Isentropic compression loading of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) and the pressure-induced phase transition at 27 GPa [J]. Applied Physics Letters, 2004, 85(6): 949–951. doi: 10.1063/1.1771464
    [10]
    HOOKS D E, HAYES D B, HARE D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa [J]. Journal of Applied Physics, 2006, 99(12): 124901. doi: 10.1063/1.2203411
    [11]
    WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [12]
    罗斌强, 张红平, 种涛, 等. 磁驱动斜波压缩实验结果的不确定度分析 [J]. 高压物理学报, 2017, 31(3): 295–300. doi: 10.11858/gywlxb.2017.03.011

    LUO B Q, ZHANG H P, CHONG T, et al. Experimental uncertainty analysis of magnetically driven ramp wave compression [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 295–300. doi: 10.11858/gywlxb.2017.03.011
    [13]
    WANG G J, TAN F L, SUN C W, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments [J]. Review of Scientific Instruments, 2008, 79(5): 053904. doi: 10.1063/1.2920200
    [14]
    种涛, 莫建军, 郑贤旭, 等. 斜波压缩下RDX单晶的动力学特性 [J]. 物理学报, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318

    CHONG T, MO J J, ZHENG X X, et al. Dynamic behaviors of RDX single crystal under ramp compression [J]. Acta Physica Sinica, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [15]
    种涛, 蔡进涛, 王桂吉. 斜波压缩下PBX-59未反应固体炸药的状态方程 [J]. 含能材料, 2021, 29(1): 35–40. doi: 10.11943/CJEM2020045

    CHONG T, CAI J T, WANG G J. Equation of state of unreacted solid explosive PBX-59 under ramp wave compression [J]. Chinese Journal of Energetic Materials, 2021, 29(1): 35–40. doi: 10.11943/CJEM2020045
    [16]
    种涛, 莫建军, 蔡进涛, 等. RDX单晶炸药的冲击-斜波加载实验研究 [J], 高压物理学报, 2020, 34(5): 051301.

    CHONG T, MO J J, CAI J T, et al. Experimental study on shock-ramp wave profiles in RDX single crystal explosive [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051301.
    [17]
    张旭, 池家春, 冯民贤. JB9014钝感炸药冲击绝热线测量 [J]. 高压物理学报, 2001, 15(4): 304–308. doi: 10.3969/j.issn.1000-5773.2001.04.011

    ZHANG X, CHI J C, FENG M X, et al. Hugoniot relation of JB9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 304–308. doi: 10.3969/j.issn.1000-5773.2001.04.011
    [18]
    裴红波, 刘俊明, 张旭, 等. 基于反向撞击法的JB-9014炸药Hugoniot关系测量 [J]. 爆炸与冲击, 2019, 39(5): 052301.

    PEI H B, LIU J M, ZHANG X, et al. Measurement of Hugoniot relation for unreacted JB-9014 explosive with reverse-impact method [J]. Explosion and Shock Waves, 2019, 39(5): 052301.
    [19]
    陶天炯, 翁继东, 王翔, 等. 一种双源光外差测速技术 [J]. 光电工程, 2011, 38(10): 39–45.

    TAO T J, WENG J D, WANG X, et al. A dual laser heterodyne velocimetry [J]. Opto-Electronic Engineering, 2011, 38(10): 39–45.
    [20]
    蔡进涛. 固体炸药的磁驱动准等熵加载实验技术及动力学行为研究 [D]. 绵阳: 中国工程物理研究院, 2018.

    CAI J T. Experimental techniques and dynamic behavior researches on solid explosives under magnetically driven quasi-isentropic compression [D]. Mianyang: China Academy of Engineering Physics, 2018.
    [21]
    刘俊明, 张旭, 赵康, 等. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数 [J]. 高压物理学报, 2018, 32(5): 051301.

    LIU J M, ZHANG X, ZHAO K, et al. Using PVDF gauge to study Grüneisen parameter of unreacted JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301.
    [22]
    DICK J J, FOREST C A, RAMSAY J B, et al. The Hugoniot and shock sensitivity of plastic-boned TATB explosive PBX-9502 [J]. Journal of Applied Physics, 1988, 63(10): 4881–4888. doi: 10.1063/1.340428
    [23]
    MULARGIA F, BOSCHI E. The generalization of the Mie-Grüneisen equation of state [J]. Geophysical Journal International, 1978(1): 263–267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(937) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return